Have a personal or library account? Click to login
Recognition of Acoustic Signals of Synchronous Motors with the Use of MoFS and Selected Classifiers Cover

Recognition of Acoustic Signals of Synchronous Motors with the Use of MoFS and Selected Classifiers

By: Adam Glowacz  
Open Access
|Aug 2015

References

  1. [1] Bui, VP., Chadebec, O., Rouve, LL., Coulomb, JL. (2008). Noninvasive Fault Monitoring of Electrical Machines by Solving the Steady-State Magnetic Inverse Problem. IEEE Transactions on Magnetics, 44 (6), 1050-1053.10.1109/TMAG.2007.916593
  2. [2] Baranski, M., Decner, A., Polak, A. (2014). Selected Diagnostic Methods of Electrical Machines Operating in Industrial Conditions. IEEE Transactions on Dielectrics and Electrical Insulation. 21 (5), 2047-2054.10.1109/TDEI.2014.004602
  3. [3] Lu, C., Tao, XC., Zhang, WJ., Wang, ZL. (2014). Machine integrated health models for condition-based maintenance. Tehnicki Vjesnik-Technical Gazette, 21 (6), 1377-1383.
  4. [4] Krolczyk, GM., Krolczyk, JB., Legutko, S., Hunjet, A. (2014). Effect of the disc processing technology on the vibration level of the chipper during operations. Tehnicki Vjesnik-Technical Gazette, 21 (2), 447-450.
  5. [5] Krolczyk, G., Legutko, S. (2014). Investigations Into Surface Integrity in the Turning Process of Duplex Stainless Steel. Transactions of Famena, 38 (2), 77-82.
  6. [6] Kluska-Nawarecka, S., Wilk-Kolodziejczyk, D., Dajda, J., Macura, M., Regulski, K. (2014). Computerassisted integration of knowledge in the context of identification of the causes of defects in castings. Archives of Metallurgy and Materials, 59 (2), 743-746.10.2478/amm-2014-0124
  7. [7] Nawarecki, E., Kluska-Nawarecka, S., Regulski, K. (2012). Multi-aspect Character of the Man-Computer Relationship in a Diagnostic-Advisory System. Human-computer systems interaction: Backgrounds and applications 2. Pt 1, Book Series: Advances in Intelligent and Soft Computing, 98, 85-102.10.1007/978-3-642-23187-2_6
  8. [8] Niklewicz, M., Smalcerz, A. (2010). Application of three-coil cylindrical inductor in induction heating of gears. Przeglad Elektrotechniczny, 86 (5), 333-335.
  9. [9] Smalcerz, A. (2013). Aspects of application of industrial robots in metallurgical processes. Archives of Metallurgy and Materials, 58 (1), 203-209.10.2478/v10172-012-0174-5
  10. [10] Pribil, J., Pribilova, A., Frollo, I. (2014). Mapping and Spectral Analysis of Acoustic Vibration in the Scanning Area of the Weak Field Magnetic Resonance Imager. Journal Of Vibration And Acoustics- Transactions Of The Asme, 136 (5). DOI: 10.1115/1.4027791.10.1115/1.4027791
  11. [11] Sebok, M., Gutten, M., Kucera, M. (2011). Diagnostics of electric equipments by means of thermovision. Przeglad Elektrotechniczny, 87 (10), 313-317.
  12. [12] Pleban, D. (2014). Definition and Measure of the Sound Quality of the Machine. Archives of Acoustics, 39 (1), 17-23.
  13. [13] Zhao, Z., Wang, C., Zhang, YG., Sun, Y. (2014). Latest progress of fault detection and localization in complex Electrical Engineering. Journal of Electrical Engineering-Elektrotechnicky Casopis, 65 (1), 55-59.10.2478/jee-2014-0008
  14. [14] Glowacz, A., Glowacz, A., Glowacz, Z. (2015). Recognition of Monochrome Thermal Images of Synchronous Motor with the Application of Skeletonization and Classifier Based on Words. Archives of Metallurgy and Materials, 60 (1), 27-32.10.1515/amm-2015-0004
  15. [15] Zuber, N., Bajric, R., Sostakov, R. (2014). Gearbox faults identification using vibration signal analysis and artificial intelligence methods. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 16 (1), 61-65.
  16. [16] Zhang, JH., Ma, WP., Lin, JW., Ma, L., Jia, XJ. (2015). Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence, Measurement, 59, 73-87.10.1016/j.measurement.2014.09.045
  17. [17] Wang, B., Liu, SL., Zhang, HL., Jiang, C. (2014). Fault diagnosis of rolling bearing based on relevance vector machine and kernel principal component analysis. Journal of Vibroengineering, 16 (1), 57-69.
  18. [18] Xiao, H., Zhou, JZ., Xiao, J., Fu, WL., Xia, X., Zhang, WB. (2014). Fault diagnosis for rotating machinery based on multi-differential empirical mode decomposition. Journal of Vibroengineering, 16 (1), 487-498.
  19. [19] Tang, GJ., He, YL., Wan, ST., Xiang, L. (2014). Investigation on stator vibration characteristics under air-gap eccentricity and rotor short circuit composite faults. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36 (3), 511-522.10.1007/s40430-013-0072-4
  20. [20] Amarnath, M., Krishna, IRP. (2014). Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis. Measurement, 58, 154-164.10.1016/j.measurement.2014.08.015
  21. [21] El-Thalji, I., Jantunen, E. (2015). A summary of fault modelling and predictive health monitoring of rolling element bearings. Mechanical Systems and Signal Processing, 60-61, 252-272.10.1016/j.ymssp.2015.02.008
  22. [22] Kang, M., Kim, J., Kim, JM., Tan, ACC., Kim, EY., Choi, BK. (2015). Reliable Fault Diagnosis for Low- Speed Bearings Using Individually Trained Support Vector Machines With Kernel Discriminative Feature Analysis. IEEE Transactions on Power Electronics, 30 (5), 2786-2797.10.1109/TPEL.2014.2358494
  23. [23] Wegiel, T., Sulowicz, M., Borkowski, D. (2007). A distributed system of signal acquisition for induction motors diagnostic, 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, Cracow, POLAND, 88-92.10.1109/DEMPED.2007.4393105
  24. [24] Jedlinski, L., Caban, J., Krzywonos, L., Wierzbicki, S., Brumercik, F. (2015). Application of vibration signal in the diagnosis of IC engine valve clearance. Journal of Vibroengineering, 17 (1), 175-187.
  25. [25] Glowacz, A. (2014). Diagnostics of direct current machine based on analysis of acoustic signals with the use of symlet wavelet transform and modified classifier based on words. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 16 (4), 554-558.
  26. [26] Glowacz, A. (2014). Diagnostics of synchronous motor based on analysis of acoustic signals with the use of line spectral frequencies and K-nearest neighbor classifier. Archives of Acoustics, 39 (2), 189-194.
  27. [27] Duspara, M., Sabo, K., Stoic, A. (2014). Acoustic emission as tool wear monitoring. Tehnicki Vjesnik- Technical Gazette, 21 (5), 1097-1101.
  28. [28] Moia, DFG., Thomazella, IH., Aguiar, PR., Bianchi, EC., Martins, CHR., Marchi, M. (2015). Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37 (2), 627-640.10.1007/s40430-014-0191-6
  29. [29] Kulka, Z. (2011). Advances in Digitization of Microphones and Loudspeakers. Archives of Acoustics, 36 (2), 419-436.10.2478/v10168-011-0030-z
  30. [30] The MARF Development Group. (2005). Modular Audio Recognition Framework v.0.3.0-devel-20050606 and its Applications, Application note.
  31. [31] Stepien, K. (2014). Research on a surface texture analysis by digital signal processing methods. Tehnicki Vjesnik-Technical Gazette, 21 (3), 485-493.
  32. [32] Pribil, J., Pribilova, A., Durackova, D. (2014). Evaluation of Spectral and Prosodic Features of Speech Affected by Orthodontic Appliances Using the GMM Classifier. Journal of Electrical Engineering- Elektrotechnicky Casopis, 65 (1), 30-36.
  33. [33] Augustyniak, P., Smolen, M., Mikrut, Z., Kantoch, E. (2014). Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors. Sensors, 14 (5), 7831-7856.10.3390/s140507831406299724787640
  34. [34] Valis, D., Pietrucha-Urbanik, K. (2014). Utilization of diffusion processes and fuzzy logic for vulnerability assessment. Eksploatacja i Niezawodnosc- Maintenance and Reliability, 16 (1), 48-55.
  35. [35] Mazurkiewicz, D. (2014). Computer-aided maintenance and reliability management systems for conveyor belts. Eksploatacja i Niezawodnosc- Maintenance and Reliability, 16 (3), 377-382.
  36. [36] Kundegorski, M., Jackson, PJB., Ziolko, B. (2014). Two-Microphone Dereverberation for Automatic Speech Recognition of Polish. Archives of Acoustics, 39 (3), 411-420.
  37. [37] Jaworek-Korjakowska J., Tadeusiewicz R. (2014). Determination of border irregularity in dermoscopic color images of pigmented skin lesions. 2014 36TH Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6459-6462.10.1109/EMBC.2014.694510725571475
  38. [38] Rosner, A., Schuller, B., Kostek, B. (2014). Classification of Music Genres Based on Music Separation into Harmonic and Drum Components. Archives of Acoustics, 39 (4), 629-638.
  39. [39] Gorny, Z., Kluska-Nawarecka, S., Wilk- Kolodziejczyk, D., Regulski, K. (2015). Methodology for the construction of a rule-based knowledge base enabling the selection of appropriate bronze heat treatment parameters using rough sets. Archives of Metallurgy and Materials, 60 (1), 309-312.10.1515/amm-2015-0050
  40. [40] Hachaj, T., Ogiela, MR. (2013). Application of neural networks in detection of abnormal brain perfusion regions. Neurocomputing, 122 (Special Issue), 33-42.10.1016/j.neucom.2013.04.030
  41. [41] Plawiak, P., Tadeusiewicz, R. (2014). Approximation of phenol concentration using novel hybrid computational intelligence methods. International Journal of Applied Mathematics and Computer Science, 24 (1), 165-181.10.2478/amcs-2014-0013
  42. [42] Jun, S., Kochan, O. (2014). Investigations of Thermocouple Drift Irregularity Impact on Error of their Inhomogeneity Correction. Measurement Science Review, 14 (1), 29-34.10.2478/msr-2014-0005
  43. [43] Roj, J. (2013). Neural Network Based Real-time Correction of Transducer Dynamic Errors. Measurement Science Review, 13 (6), 286-291.10.2478/msr-2013-0042
  44. [44] Krolczyk, JB. (2014). The Use of the Cluster Analysis Method to Describe the Mixing Process of the Multi- Element Granular Mixture. Transactions of Famena, 38 (4), 43-54.
  45. [45] Shariati, O., Zin, AAM., Khairuddin, A., Aghamohammadi, MR. (2014). Development and implementation of neural network observers to estimate synchronous generators' dynamic parameters using on-line operating data. Electrical Engineering, 96 (1), 45-54.10.1007/s00202-012-0274-2
  46. [46] Gokozan, H., Taskin, S., Seker, S., Ekiz, H. (2015). A neural network based approach to estimate of power system harmonics for an induction furnace under the different load conditions. Electrical Engineering, 97 (2), 111-117.10.1007/s00202-014-0320-3
  47. [47] Nafisi, H., Abedi, M., Gharehpetian, GB. (2014). Locating Pd in Transformers through Detailed Model and Neural Networks. Journal of Electrical Engineering-Elektrotechnicky Casopis, 65 (2), 75-82.10.2478/jee-2014-0011
  48. [48] Glowacz, A., Glowacz, A., Korohoda, P. (2012). Recognition of Color Thermograms of Synchronous Motor with the Application of Image Cross-Section and Linear Perceptron Classifier. Przeglad Elektrotechniczny, 88 (10A), 87-89.
Language: English
Page range: 167 - 175
Submitted on: Jun 20, 2014
Accepted on: Jul 24, 2015
Published on: Aug 27, 2015
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Adam Glowacz, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.