Have a personal or library account? Click to login
Haar Wavelet Based Implementation Method of the Non–integer Order Differentiation and its Application to Signal Enhancement Cover

Haar Wavelet Based Implementation Method of the Non–integer Order Differentiation and its Application to Signal Enhancement

Open Access
|Jul 2015

References

  1. [1] Sabatier, J., Agrawal, O.P., Machado, J.T. (2007). Advances in Fractional Calculus. Springer.10.1007/978-1-4020-6042-7
  2. [2] Toman, J.J., Brown, S.D. (1981). Peak resolution by semi-derivative voltammetry. Analytical Chemistry, 53 (9), 1497-1504.10.1021/ac00232a046
  3. [3] Bobrowski, A., Kasprzyk, G., Mocák, J. (2000). Theoretical and experimental resolution of semiderivative linear scan voltammetry. Collection of Czechoslovak Chemical Communications, 65 (6), 979-994.10.1135/cccc20000979
  4. [4] Kharintsev, S.S., Salakhov, M.K. (2004). A simple method to extract spectral parameters using fractional derivative spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (8), 2125-2133.10.1016/j.saa.2003.11.013
  5. [5] Mocak, J., Janiga, I., Rievaj, M., Bustin, D. (2007). The use of fractional differentiation or integration for signal improvement. Measurement Science Review, 7 (5), 39-42.
  6. [6] Xiaoquan, L., Hongde, L., Min, Z., Xiaoqiang, W., Zhonghua, X., Jingwan, K. (2003). Fractional derivative combined fourier-least square fitting to process noised overlapped signal. Chinese Journal of Analytical Chemistry, 31 (2), 143-147.
  7. [7] Li, Y.L., Tang, H.Q., Chen, H.X. (2011). Fractional-order derivative spectroscopy for resolving simulated overlapped Lorenztian peaks. Chemometrics and Intelligent Laboratory Systems, 107 (1), 83-89.10.1016/j.chemolab.2011.01.013
  8. [8] Pu, Y., Wang, W., Zhou, J., Wang, Y., Jia, H. (2008). Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Science in China Series F: Information Sciences, 51 (9), 1319-1339.10.1007/s11432-008-0098-x
  9. [9] Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C. (2003). Fractional differentiation for edge detection. Signal Processing, 83 (11), 2421-2432.10.1016/S0165-1684(03)00194-4
  10. [10] Gao, C., Zhou, J., Zheng, X., Lang, F. (2011). Image enhancement based on improved fractional differentiation. Journal of Computational Information Systems, 7 (1), 257-264.
  11. [11] Gao, C.B., Zhou, J.L., Hu, J.R., Lang, F.N. (2011). Edge detection of colour image based on quaternion fractional differential. IET Image Processing, 5 (3), 261-272.10.1049/iet-ipr.2009.0409
  12. [12] Cuesta, E., Kirane, M., Malik, S.A. (2012). Image structure preserving denoising using generalized fractional time integrals. Signal Processing, 92 (2), 553-563.10.1016/j.sigpro.2011.09.001
  13. [13] Ren, Z., He, C., Zhang, Q. (2013). Fractional order total variation regularization for image super-resolution. Signal Processing, 93 (9), 2408-2421.10.1016/j.sigpro.2013.02.015
  14. [14] Khanna, S., Chandrasekaran, V. (2012). Fractional derivative filter for image contrast enhancement with order prediction. In IET Conference on Image Processing (IPR 2012). IEEE, 1-6.10.1049/cp.2012.0432
  15. [15] Krishna, B.T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91 (3), 386-426.10.1016/j.sigpro.2010.06.022
  16. [16] Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Vol. 198). Academic Press.
  17. [17] Chen, D., Chen, Y.Q., Xue, D. (2011). Digital fractional order Savitzky-Golay differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, 58 (11), 758-762.10.1109/TCSII.2011.2168022
  18. [18] Tseng, C.C., Lee, S.L. (2010). Design of fractional order digital differentiator using radial basis function. IEEE Transactions on Circuits and Systems I: Regular Papers, 57 (7), 1708-1718.10.1109/TCSI.2009.2034808
  19. [19] Tseng, C.C. (2001). Design of fractional order digital FIR differentiators. IEEE Signal Processing Letters, 8 (3), 77-79.10.1109/97.905945
  20. [20] Tseng, C.C. (2007). Design of FIR and IIR fractional order Simpson digital integrators. Signal Processing, 87 (5), 1045-1057.10.1016/j.sigpro.2006.09.006
  21. [21] Tseng, C.C., Pei, S.C., Hsia, S.C. (2000). Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Processing, 80 (1), 151-159.10.1016/S0165-1684(99)00118-8
  22. [22] Tseng, C.C. (2006). Design of variable and adaptive fractional order FIR differentiators. Signal Processing, 86 (10), 2554-2566.10.1016/j.sigpro.2006.02.004
  23. [23] Chen, Y., Vinagre, B.M. (2003). A new IIR-type digital fractional order differentiator. Signal Processing, 83 (11), 2359-2365.10.1016/S0165-1684(03)00188-9
  24. [24] Li, Y., Sun, N. (2011). Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Computers & Mathematics with Applications, 62 (3), 1046-1054.10.1016/j.camwa.2011.03.032
  25. [25] Ferdi, Y. (2009). Impulse invariance-based method for the computation of fractional integral of order 0< α< 1. Computers & Electrical Engineering, 35 (5), 722-729.10.1016/j.compeleceng.2009.02.005
  26. [26] Griffiths, T.R., King, K., Hubbard, H.V.S.A., Schwing-Weill, M.J., Meullemeestre, J. (1982). Some aspects of the scope and limitations of derivative spectroscopy. Analytica Chimica Acta, 143, 163-176.10.1016/S0003-2670(01)95496-0
  27. [27] O'Haver, T.C., Fell, A.F., Smith, G. et al. (1982). Derivative spectroscopy and its applications in analysis. In Analytical Proceeding, 19 (1), 22-46.10.1039/ap9821900022
  28. [28] Shao, X., Cai, W., Sun, P., Zhang, M., Zhao, G. (1997). Quantitative determination of the components in overlapping chromatographic peaks using wavelet transform. Analytical Chemistry, 69 (9), 1722-1725.10.1021/ac9608679
  29. [29] Chi-Hsu, W. (1983). On the generalization of block pulse operational matrices for fractional and operational calculus. Journal of the Franklin Institute, 315 (2), 91-102.10.1016/0016-0032(83)90069-8
Language: English
Page range: 101 - 106
Submitted on: Nov 18, 2014
Accepted on: Jun 18, 2015
Published on: Jul 10, 2015
Published by: Slovak Academy of Sciences, Institute of Measurement Science
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Yuanlu Li, Chang Pan, Xiao Meng, Yaqing Ding, Haixiu Chen, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.