Have a personal or library account? Click to login
Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique Cover

Determination of Radiative Heat Transfer Coefficient at High Temperatures Using a Combined Experimental-Computational Technique

Open Access
|Jun 2015

References

  1. [1] Lu, H., Zhao, X.L., Han, L.H. (2011). FE modelling and fire resistance design of concrete filled double skin tubular columns. Journal of Constructional Steel Research, 67, 1733-1748.10.1016/j.jcsr.2011.04.014
  2. [2] Nguyen, T.D., Meftah, F. (2014). Behavior of hollow clay brick masonry walls during fire. Part2: 3D finite element modeling and spalling assessment. Fire Safety Journal, 66, 35-45.10.1016/j.firesaf.2013.08.017
  3. [3] Ariyanayagam, A.D., Mahendran, M. (2014). Numerical modelling of load bearing light gauge steel frame wall systems exposed to realistic design fires. Thin-Walled Structures, 78, 148-170.10.1016/j.tws.2014.01.003
  4. [4] International Organization for Standardization. (2006). Fire safety engineering - Selection of design fire scenarios and design fires. ISO/TS 16733. Geneva.
  5. [5] European Committee for Standardization. (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. EN 1991-1-2. Brussels.
  6. [6] Koca, A., Gemici, Z., Topacoglu, Y., Cetin, G., Acet, R.C., Kanbur, B.B. (2014). Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room. Energy and Buildings, 82, 211-221.10.1016/j.enbuild.2014.06.045
  7. [7] Cholewa, T., Rosiński, M., Spik, Z., Dudzińska, M.R., Siuta-Olcha, A. (2013). Energy and Buildings, 66, 599-606.10.1016/j.enbuild.2013.07.065
  8. [8] Nsofor, E.C., Adebiyi, G.A. (2001). Measurements of the gas-particle convective heat transfer coefficient in a packed bed for high-temperature energy storage. Experimental Thermal and Fluid Science, 24, 1-9.10.1016/S0894-1777(00)00047-9
  9. [9] Hong-Shun, L., Ren-Zhang, Q., Wen-Di, H., Kai-Jun, B. (1993). An investigation on instantaneous local heat transfer coefficients in high-temperature fluidized beds-II. Statistical analysis. International Journal of Heat and Mass Transfer, 36, 4397-4406.10.1016/0017-9310(93)90124-O
  10. [10] Bao, Z., Yang, F., Wu, Z., Cao, X., Zhang, Z. (2013). Simulation studies on heat and mass transfer in hightemperature magnesium hydride reactors. Applied Energy, 112, 1181-1189.10.1016/j.apenergy.2013.04.053
  11. [11] Caron, E.J.F.R., Daun, K.J., Wells, M.A. (2014). Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures. International Journal of Heat and Mass Transfer, 71, 396-404.10.1016/j.ijheatmasstransfer.2013.12.039
  12. [12] Freund, S., Kabelac, S. (2010). Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD. International Journal of Heat and Mass Transfer, 53, 3764-3781.10.1016/j.ijheatmasstransfer.2010.04.027
  13. [13] Czech Office for Standards, Metrology and Testing. (2011). Thermal protection of buildings - Part 2: Requirements. CSN 73 0540-2. Prague.
  14. [14] European Committee for Standardization. (1999). Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar. EN 1015-10. Brussels.
  15. [15] Kruis, J., Koudelka, T., Krejči, T. (2010). Efficient computer implementation of coupled hydro-thermomechanical analysis. Mathematics and Computers in Simulation, 80 (8), 1578-1588.10.1016/j.matcom.2008.11.010
  16. [16] International Center for Numerical Methods in Engineering. (2014). GiD v12.0.1 Software. Barcelona, Spain.
  17. [17] Sundqvist, B. (1992). Thermal diffusivity and thermal conductivity of Chromel, Alumel, and Constantan in the range 100-450 K. Journal of Applied Physics, 72 (2), 539-545.10.1063/1.351885
  18. [18] Hrstka, O., Kučerova, A., Lepš, M., Zeman, J. (2003). A competitive comparison of different types of evolutionary algorithms. Computers & Structures, 81 (18-19), 1979-1990.10.1016/S0045-7949(03)00217-7
  19. [19] Koči, J., Žumar, J., Pavlik, Z., Černy, R. (2012). Application of genetic algorithm for determination of water vapor diffusion parameters of building materials. Journal of Building Physics, 35 (3), 238-250.10.1177/1744259111418330
  20. [20] Jun, S., Kochan, O. (2014). Investigation of thermocouple drift irregularity impact on error of their inhomogeneity correction. Measurement Science Review, 14 (1), 29-34.10.2478/msr-2014-0005
  21. [21] International Electrotechnical Commission. (1995). Thermocouples. Part 2: Tolerances. IEC Standard 60584-2. Geneva, Switzerland.
  22. [22] Joint Committee for Guides in Metrology. (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurements. ISO/EIC Standard 98-3:2008.
  23. [23] Černy, R., Totova, M., Poděbradska, J., Toman, J., Drchalova, J., Rovnanikova, P. (2003). Thermal and hygric properties of Portland cement mortar afetr hightemperature exposure combined with compressive stress. Cement and Concrete Research, 33, 1347-1355.10.1016/S0008-8846(03)00067-X
  24. [24] Morgan Thermal Ceramics. (2009). Datasheet Code 5-5-01 E. http://www.morganthermalceramics.com/sites/default/files/datasheets/cerablanketcerachemcerachromeblanketenglish.pdf.
  25. [25] Spinnler, M., Winter, E.R.F., Viskanta, R. (2004). Studies on high-temperature multilayer thermal insulations. International Journal of Heat and Mass Transfer, 47, 1305-1312.10.1016/j.ijheatmasstransfer.2003.08.012
  26. [26] Huang, C., Yue, Z. (2014). Calculation of hightemperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method. Chinese Journal of Aeronautics, 27 (4), 791-796.10.1016/j.cja.2014.03.007
  27. [27] Kalema, T., Haapala, T. (1995). Effect of interior heat transfer coefficient on thermal dynamics and energy consumption. Energy and Buildings, 22, 101-113.10.1016/0378-7788(94)00907-2
  28. [28] American Society of Heating, Refrigerating and Air- Conditioning Engineers. (1981). ASHRAE Handbook: Fundamentals. Atlanta, GA.
  29. [29] Khalifa, A.J.N., Marshall, R.H. (1990). Validation of heat transfer coefficients on interior building surfaces using real-sized indoor test cell. International Journal of Heat and Mass Transfer, 33, 2219-2236.10.1016/0017-9310(90)90122-B
  30. [30] Koči, V., Maděra, J., Jerman, M., Trnik, A., Černy, R. (2014). Determination of the equivalent thermal conductivity of complex material systems with largescale heterogeneities. International Journal of Thermal Sciences, 86, 365-373.10.1016/j.ijthermalsci.2014.07.020
  31. [31] European Committee for Standardization. (2008). Heating systems in buildings - Design of embedded water based surface heating and cooling systems - Part 1: Determination of the design heating and cooling capacity. EN 15377-1. Brussels.
  32. [32] Dascalaki, E., Santamouris, M., Balaras, C.A, Asimakopoulos, D.N. (1994). Natural convection heat transfer coefficients from vertical and horizontal surfaces for building applications. Energy and Buildings, 20, 243-249.10.1016/0378-7788(94)90027-2
  33. [33] Jurges, W. (1924). Der Warmeubergang an einer ebenen Wand (heat transfer at a plane wall). Beihefte zum Gesundheits-Ingenieur, 1 (19).
  34. [34] Dittus, F.W., Boelter, L.M.K. (1985). Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 12 (1), 3-22. 10.1016/0735-1933(85)90003-X
Language: English
Page range: 85 - 91
Submitted on: Dec 8, 2014
|
Accepted on: Apr 30, 2015
|
Published on: Jun 9, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2015 Václav Kočí, Jan Kočí, Tomáš Korecký, Jiří Maděra, Robert Č Černý, published by Slovak Academy of Sciences, Institute of Measurement Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.