Have a personal or library account? Click to login
Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms Cover

Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms

Open Access
|May 2019

References

  1. [1] Aharouch L, Akdim Y. Strongly Nonlinear Elliptic Unilateral Problems without sign condition and L1Data. Appl. Anal. (2005); 11-31.10.1155/AAA.2005.11
  2. [2] Akdim Y, Azroul E, Benkirane A. Existence Results for Quasilinear Degenerated Equations Via Strong Convergence of Truncations. Rev. Mat. Complut., (2001) 17; 359–379.10.5209/rev_REMA.2004.v17.n2.16730
  3. [3] Akdim Y, Benkirane A, El Moumni M. Existence results for nonlinear elliptic problems with lower order terms. Int. J. Evol. Equ., (2013) 8; 4: 257–276.
  4. [4] Antontsev S, Chipot M. Anisotropic equations: uniqueness and existence results. Differential Integral Equations (2008) 6; 401–419.10.57262/die/1356038624
  5. [5] Bendahmane M, Karlsen KH. Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres. Electronic. J. Differential Equations, (2006) 46; 1–30.10.1090/conm/371/06845
  6. [6] Benkirane A, Bennouna J. Existence of entropy solutions for nonlinear problems in Orlicz spaces. Abs. and Apl. Ann., (2002) 7; 85–102.10.1155/S1085337502000751
  7. [7] Benkirane A, Bennouna J. Existence and uniqueness of solution of unilateral problems with L1-data in Orlicz spaces. Ital. J. Pure Appl. Math., (2004) 16; 87-102.
  8. [8] Bénilan P, Boccardo L, Gallouet T, Gariepy R, Pierre M, Vázquez J. An L1-theory of existence and uniqueness of nonlinear elliptic equations. Ann. Sc. Norm. Sup. Pisa, CL. IV(1995).; 22 : 240–273.
  9. [9] Boccardo L, Some nonlinear Dirichlet problems in L1involving lower order terms in divergence form. Progress in elliptic and parabolic partial differential equations (Capri, 1994), Pitman Res. Notes Math. Ser., 350, p. 43-57, Longman, Harlow, 1996.
  10. [10] Boccardo L, Gallouët T. Strongly nonlinear elliptic equations having natural growth terms and L1data. Nonlinear Anal. T.M.A. (1992); 19: 573-578.10.1016/0362-546X(92)90022-7
  11. [11] Boccardo L, Gallouët T, Marcellini P. Anisotropic equations in L1. Differential Integral Equations (1996) 1; 209–212.10.57262/die/1367969997
  12. [12] Boccardo L, Gallouët T, Orsina L. Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. (1997) 73; 203–223.10.1007/BF02788144
  13. [13] Boccardo L, Murat F, Puel J.-P. Existence of bounded solution for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. (1988) 152; 183–196.10.1007/BF01766148
  14. [14] Di Castro A. Existence and regularity results for anisotropic elliptic problems. Adv. Nonlinear Stud. (2009)9; 367–393.10.1515/ans-2009-0207
  15. [15] Di Castro A. Anisotropic elliptic problems wih natural growth terms. Manuscripta Math. (2011) 135: 521–543 .10.1007/s00229-011-0431-3
  16. [16] Di Nardo R, Feo F. Existence and uniqueness for nonlinear anisotropic elliptic equations. Arch. Math.(2014) 102; 141–153.10.1007/s00013-014-0611-y
  17. [17] Fragala I, Gazzola F, Kawohl B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincar Anal. Non Linéaire (2004) 5; 715–734.10.1016/j.anihpc.2003.12.001
  18. [18] Guib O, Mercaldo A. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Commun. Pure Appl. Anal. (2008) 1; 163–192.10.3934/cpaa.2008.7.163
  19. [19] Leray J., Lions L. Quelques Mthodes de Rsolution des Problmes aux Limites Non linaires. Dunod, Paris, 1968.
  20. [20] J. P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. (1987) 11; 379-492.10.1016/0362-546X(87)90053-8
  21. [21] Li FQ. Anisotropic elliptic equations in Lm. J. Convex Anal. (2001) 2; 417–422.
  22. [22] M.Troisi. Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat (1969) 18; 3–24.
  23. [23] Yazough C, Azroul E, Redwane H. Existence of solutions for some nonlinear elliptic unilateral problems with measure data. E. J.Q. Theo. of Di. Equations. (2013) 43; 1–21.10.14232/ejqtde.2013.1.43
Language: English
Page range: 171 - 188
Submitted on: Feb 25, 2019
Accepted on: Apr 18, 2019
Published on: May 16, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Youssef Akdim, Chakir Allalou, Abdelhafid Salmani, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.