Have a personal or library account? Click to login
Obstacle parabolic equations in non-reflexive Musielak-Orlicz spaces Cover

Obstacle parabolic equations in non-reflexive Musielak-Orlicz spaces

Open Access
|May 2019

Abstract

We prove existence of entropy solutions to general class of unilateral nonlinear parabolic equation in inhomogeneous Musielak-Orlicz spaces avoiding ceorcivity restrictions on the second lower order term. Namely, we consider

{uψinQT,b(x,u)t-div(a(x,t,u,u))=f+div(g(x,t,u))L1(QT).$$\left\{ \matrix{ \matrix{ {u \ge \psi } \hfill & {{\rm{in}}} \hfill & {{Q_T},} \hfill \cr } \hfill \cr {{\partial b(x,u)} \over {\partial t}} - div\left( {a\left( {x,t,u,\nabla u} \right)} \right) = f + div\left( {g\left( {x,t,u} \right)} \right) \in {L^1}\left( {{Q_T}} \right). \hfill \cr} \right.$$

The growths of the monotone vector field a(x, t, u, ᐁu) and the non-coercive vector field g(x, t, u) are controlled by a generalized nonhomogeneous N- function M (see (3.3)-(3.6)). The approach does not require any particular type of growth of M (neither Δ2 nor ᐁ2). The proof is based on penalization method.

Language: English
Page range: 189 - 206
Submitted on: Feb 25, 2019
Accepted on: Apr 23, 2019
Published on: May 16, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Ahmed Aberqi, Jaouad Bennouna, Mhamed Elmassoudi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.