References
- [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279, (2015), 57-66.10.1016/j.cam.2014.10.016
- [2] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, (2005), 1473-1484.10.1016/j.na.2004.11.005
- [3] P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, (2003).10.1007/978-94-017-0399-4
- [4] Y.-M. Chu, M. Adil Khan, T. Ali and S. S. Dragomir, Inequalities for α-fractional differentiable functions, J. Inequal. Appl., (2017) 2017:93 DOI10.1186/s13660-017-1371-6.10.1186/s13660-017-1371-6540993028515621
- [5] S. S. Dragomir, Inequalities of Hermite-Hadamard type, Moroccan J. Pure Appl. Anal., 1(1), (2015), 1-21.10.7603/s40956-015-0001-x
- [6] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21, (1995), 335-341.
- [7] T. S. Du, J. G. Liao and Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl., 9, (2016), 3112-3126.10.22436/jnsa.009.05.102
- [8] S. Erden and M. Z. Sarikaya, New Hermite-Hadamard type inequalities for twice differentiable convex mappings via Green function and applications, Moroccan J. Pure Appl. Anal., 2(2), (2016), 107-117.10.7603/s40956-016-0009-x
- [9] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, (1994), 100-111.10.1007/BF01837981
- [10] I. Işcan and S. Turhan, Generalized Hermite-Hadamard-Fejér type inequalities for GA-convex functions via fractional integral, Moroccan J. Pure Appl. Anal., 2(1), (2016), 34-46.10.7603/s40956-016-0004-2
- [11] A. Kashuri and R. Liko, Hermite-Hadamard type integral inequalities for products of two generalized (s, m, ξ)- preinvex functions, Moroccan J. Pure Appl. Anal., 3(1), (2017), 102-115.10.1515/mjpaa-2017-0009
- [12] M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman, Inequalities for three times differentiable functions, J. Math., Punjab Univ., 48(2), (2016), 35-48.
- [13] M. Adil Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae, 86(1), (2017), 153-164.
- [14] M. Adil Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya, HermiteHadamard type inequalities for conformable fractional integrals, RACSAM, Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat., 2017(2): 1-16 DOI10.1007/s13398-017-0408-5.10.1007/s13398-017-0408-5
- [15] M. Adil Khan, Y.-M. Chu, T. U. Khan and J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15, (2017), 1414-1430.10.1515/math-2017-0121
- [16] M. Adil Khan, S. Begum, Y. Khurshid and Y.-M. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018(70), (2018), 1-14.10.1186/s13660-018-1664-4588277529628746
- [17] M. Adil Khan, Y.-M. Chu, A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for MT(r;g,m,ϕ)-preinvex functions, J. Comput. Anal. Appl., 26(8), (2019), 1487-1503.
- [18] M. Adil Khan, Y.-M. Chu, A. Kashuri, R. Liko and G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, In press.
- [19] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264, (2014), 65-70.10.1016/j.cam.2014.01.002
- [20] M. Kunt and I. Işcan, Hermite-Hadamard type inequalities for p-convex functions via fractional integrals, Moroccan J. Pure Appl. Anal., 3(1), (2017), 22-35.10.1515/mjpaa-2017-0003
- [21] W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 15(2), (2014), 585-591.10.18514/MMN.2014.660
- [22] W. Liu, W. Wen and J. Park, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16(1), (2015), 249-256.10.18514/MMN.2015.1131
- [23] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9, (2016), 766-777.10.22436/jnsa.009.03.05
- [24] M. E. Özdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(1), (2011), 62-73.10.37193/CMI.2011.01.08
- [25] R. Pini, Invexity and generalized convexity, Optimization, 22, (1991), 513-525.10.1080/02331939108843693
- [26] E. Set and A. Gözpinar, A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals, Submitted.
- [27] E. Set and I. Mumcu, Hermite-Hadamard-Fejér type inequalies for conformable fractional integrals, (Submitted).
- [28] E. Set, A. O. Akdemir and I. Mumcu, Ostrowski type inequalities for functions whose derivatives are convex via conformable fractional integrals, Submitted.
- [29] E. Set, A. O. Akdemir and I. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Submitted.
- [30] E. Set, M. E. Özdemir, M. Z. Sarikaya and F. Karakoç, Hermite-Hadamard type inequalities for (α,m)-convex functions via fractional integrals, Moroccan J. Pure Appl. Anal., 3(1), (2017), 15-21.10.1515/mjpaa-2017-0002
- [31] E. Set, M. Z. Sarikaya and A. Gözpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., Accepted paper.
- [32] D. D. Stancu, G. Coman and P. Blaga, Analiză numerică şi teoria aproximării, Cluj-Napoca: Presa Universitară Clujeană., 2, (2002).
- [33] M. Tunç, Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17(4), (2014), 691-696.
- [34] X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, (2003), 607-625.10.1023/A:1023953823177
- [35] Y. Zhang, T. S. Du, H.Wang, Y.-J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018(49), (2018), 1-30.10.1186/s13660-018-1639-5584716929568210