Have a personal or library account? Click to login
A bifurcation result involving Sobolev trace embedding and the duality mapping of W1,p Cover

A bifurcation result involving Sobolev trace embedding and the duality mapping of W1,p

Open Access
|Jul 2018

Abstract

We consider the perturbed nonlinear boundary condition problem

{-Δpu=|u|p-2u+f(λ,x,u)inΩ|u|p-2u.ν=λρ(x)|u|p-2uonΓ.$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u + f\left( {\lambda ,x,u} \right)\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$

Using the Sobolev trace embedding and the duality mapping defined on W1,p(Ω), we prove that this problem bifurcates from the principal eigenvalue λ1 of the eigenvalue problem

{-Δpu=|u|p-2uinΩ|u|p-2u.ν=λρ(x)|u|p-2uonΓ.$$\left\{ {\matrix{ { - \Delta _p u} \hfill & = \hfill & {\left| u \right|^{p - 2} u\,{\rm{in}}\,\Omega } \hfill \cr {\left| {\nabla u} \right|^{p - 2} \nabla u.\nu } \hfill & = \hfill & {\lambda \rho \left( x \right)\left| u \right|^{p - 2} u\,{\rm{on}}\,\Gamma .} \hfill \cr } } \right.$$

Language: English
Page range: 186 - 198
Submitted on: Mar 1, 2017
Accepted on: Jun 25, 2018
Published on: Jul 28, 2018
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Abdelouahed El Khalil, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.