Have a personal or library account? Click to login
Assessment of Heavy Metals Inactivation in Contaminated Soil by Coal Fly and Bottom Ashes Cover

Assessment of Heavy Metals Inactivation in Contaminated Soil by Coal Fly and Bottom Ashes

Open Access
|Dec 2017

References

  1. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121-142. DOI: 10.1016/j.geoderma.2004.01.003.10.1016/j.geoderma.2004.01.003
  2. Antonkiewicz, J. (2007). Influence of different ash-sludge and ash-peat mixtures on the yield and elements content of a grass and birdsfoot trefoil mixted stand. Part II. Heavy metals. Zeszyty Problemów Postępów Nauk Rolniczych, 520, 265-278 [in Polish].
  3. Bada, S. O., & Potgieter-Vermaak, S. (2008). Evaluation and treatment of coal fly ash for adsorption application. Leonardo Electronic Journal of Practices and Technologies, 12, 37-48.
  4. Barrow, N. J. (1999). The four laws of soil chemistry: The Lepper lecture 1998. Australian Journal of Soil Research 37, 787-829.10.1071/SR98115
  5. Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 3-82. DOI: 10.1016/S0269- 7491(03)00250-1.10.1016/S0269-7491(03)00250-1
  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society 60, 309-319. DOI: 10.1021/ja01269a023.10.1021/ja01269a023
  7. Bradshaw, A. (2000). The use of natural processes in reclamation - Advantages and Difficulties. Landscape and Urban Planning, 51(2-4), 89-100. DOI: 10.1016/S0169-2046(00)00099-2.10.1016/S0169-2046(00)00099-2
  8. Carlon, C., Norbiato, M., Critto, A., & Marcomini, A. (2000). Risk analysis applied to a contaminated industrial site: Determination of risk based remedial targets. Annale Chimica, 90, 349-358.
  9. Carter, D. L., Mortland, M. M., & Kemper, W. D. (1986). Specific Surface. Methods of Soil Analysis. Chapter 16, Agronomy, No. 9, Part 1, 2nd Ed., American Society of Agronomy.10.2136/sssabookser5.1.2ed.c16
  10. Ciccu, R., Ghiani M., Peretti, R., Serci A., & Zucca A. (2001). Heavy metal immobilisation using fly ash in soil contaminated by mine activity. International Ash Utilization Symposium. Center for Applied Energy Research, University of Kentucky. Paper #6 (www.flyash.info).
  11. Circular Economy Package (CEP): http://ec.europa.eu/environment/circular-economy (Entry 15.07.2017) de Jong, E. (1999). Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science 79, 345-351. DOI: 10.4141/S98-069.10.4141/S98-069
  12. Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2004). Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Science and Plant Nutrition, 50(6), 899-908. DOI: 10.1080/00380768.2004.10408552.10.1080/00380768.2004.10408552
  13. Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2007). Assessment of copper and zinc stabilization process in soils after the application of brown coal, sugar beet leaves and cement. Ecological Chemistry and Engineering, 14(2),181-189.
  14. Diatta, J. B., & Chudzińska, E. (2009). Chemical remediation of zinc contaminated soils by applying a cementbrown coal-based component (CEMBRO). Ochrona Środowiska i Zasobów Naturalnych, 41, 89-101.
  15. Diatta, J. B., Skubiszewska, A., & Witczak R. (2009). Assessment of chemical degradation of selected soil properties as induced by copper, zinc and hydrogen. Ecological Chemistry and Engineering A, 16, 1-10.
  16. Diatta, J. B., Komisarek, J., & Wiatrowska, K. (2012). Evaluation of heavy metals competitive sorption and potential mobility on the basis of Cu/Cd and Zn/Pb binary systems. Fresenius Environmental Bulletin, 21(5), 1105-1109.
  17. Fotovat, A., Naidu, R., & Sumner M. E. (1997). Water: soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Australian Journal of Soil Research 35, 687-709. DOI: 10.1071/S96086.10.1071/S96086
  18. Gajda, A., Jaworski W., & Barc W. (2002). Prognosis in the production of coal combustion by-products at professional power stations to 2015. Biuletyn Miesięczny PSE SA, 11(137), 2-14 [in Polish].
  19. Gluzińska, J. Walawska B., & Łuczkowska D. (2016). Properties of waste fly ash as a hard coal combustion byproduct after the application of dry sodium sorbents to purify flue gases. Prace Instytutu Mechaniki Górotworu PAN, 18(3), 83-91 [in Polish].
  20. Gregg, S. J., & Sing, K. S. W. (1967). Adsorption, Surface Area and Porosity. Academic Press Inc, London, UK, p. 44-50.10.1149/1.2426447
  21. Gupta, S. K., Herren, T., Wenger, K., Krebs, R., & Hari, T. (2000). In-situ gentle remediation measures for heavy metal-polluted soils, [in:] Phytoremediation of contaminated soil and water. Soil and Water Pollution , CRC Press LLC, p. 303-322.
  22. Hycnar, J. J., Szczygielski, T., Lysek, N., & Rajczyk, K. (2014). Trends in the optimalisation of the management of coal combustion by-products. Piece Przemysłowe i Kotły, 5-6,16-27 [in Polish].
  23. Ibekwe, A. M, Angle, J. S, Chaney, R. L, & Van Berkum, P. (1997). Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agriculture Ecosystems and Environment 61,1679-1685.10.1016/S0167-8809(96)01106-1
  24. International Standard (1995). Soil quality - Extraction of trace elements soluble in aqua regia, ISO 11466 Geneva.
  25. Kabata-Pendias, A., Motowicka-Terelak, T., Piotrowska, M., Terelak, H., & Witek, T. (1993). Evaluation of the degree of soils and plants contamination by heavy metals and sulphur. Framework guidelines for agriculture. IUNG Puławy P(53), 20 p. (in Polish).
  26. Krebs, R., Gupta, S. K., Furrer, & Schulin, G. R. (1999). Gravel sludge as immobilizing agent in soils contaminated by heavy metals: a field study. Water, Air and Soil Pollution, 115, 465-479. DOI: 10.1023/A:1005167004828.10.1023/A:1005167004828
  27. Kumpiene, J., Lagerkvist A., & Maurice C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management 28, 215-225. DOI: 10.1016/j.wasman.2006.12.012.10.1016/j.wasman.2006.12.012
  28. Lombi, E., Hamon, R. E., McGrath, S. P. & Mc-Laughlin, M. J. (2003). Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979-984. DOI: 10.1021/es026083w.10.1021/es026083w
  29. Łączny, M. J. (2002). Non-conventional method of utilization of fly ash. Central Mining Institute, Katowice, pp. 7-19.
  30. Matsi, T. & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and ryegrass growth and composition. Environmental Pollution, 104(1), 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.10.1016/S0269-7491(98)00145-6
  31. McBride, M. B., Sauvé, S., & Hendershot W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337-346. DOI: 10.1111/j.1365-2389.1997.tb00554.x.10.1111/j.1365-2389.1997.tb00554.x
  32. McGowen, S. L. (2000). In-situ chemical treatments for reducing metal solubility and transport in smelter contaminated soils. Ph.D. Diss. Dep. Plant and Soil Sciences, Oklahoma State Univ., Stillwater, OK.
  33. Mench, M., Vangronsveld, J., Lepp, N. W., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: J. Vangronsveld and S. D. Cunningham (editors): Metal-Contaminated Soils: In-situ inactivation and phytorestoration, pp. 151-182. Springer Verlag, Berlin Heidelberg. ISBN: 1-57059-531-3.
  34. Mohapatra, R., & Rao, J. R. (2001). Some aspects of characterisation, utilisation and environmental effects of fly ash (a Review). Journal of Chemical Technology and Biotechnology, 76(1), 9-26. DOI: 10.1002/1097- 4660(200101)76:1<9::AID-JCTB335>3.0.CO;2-5.10.1002/1097-4660(200101)76:1<;9::AID-JCTB335>3.0.CO;2-5
  35. Oste, L. A., Lexmond, T. M. & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31(3), 813-821.10.2134/jeq2002.8130
  36. Percival, H. J, Speir, T. W, & Parshotam, A. (1999). Soil solution chemistry of contrasting soils amended with heavy metals. Australian Journal of Soil Research 37, 993-1004. DOI: 10.1071/SR98055.10.1071/SR98055
  37. Polish Standard (1994). Polish Standardisation Committee, ref. PrPN-ISO 10390 (E): Soil quality and pH determination. First edition (in Polish).
  38. Querol, A. A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., Ayora, C. & Simón, M. (2005). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62(2), 171-180. DOI: 10.1016/j.chemosphere.2005.05.029.10.1016/j.chemosphere.2005.05.029
  39. Ramme, B. W., & Tharaniyil, M. P. (2013). We Energies - Coal Combustion Products Utilization Handbook. Copyright 2013, Wisconsin Electric Power Company. 3rd Edition, Manufactured in the United States of America, 448 p.
  40. Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L. et al. (ed). Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI, 417-435.10.2136/sssabookser5.3.c14
  41. Robl, T., Mahboub, K., Will, S., & Robert R. (2010). Fluidized bed combustion ash utilization: CFBC fly ash as a pozzolanic additive to Portland cement concrete. Coventry University and the University of Wisconsin Milwaukee Centre for By-products Utilization. Second International Conference on Sustainable Construction Materials and Technologies (June 28-30, 2010). Universita Politecnica delle Marche, Ancona, Italy. Special Technical Proceedings ed. Claisse, P., Ganjian, E., Canpolat, F., & Naik, T. (ISBN 978-1-4507-1488-4).
  42. Sanderson, R. (1989). Electronegativity and bond energy. Journal of American Chemical Society, 105(8), 2259-2261.10.1021/ja00346a026
  43. Sarbak, Z., & Kramer-Wachowiak, M., 2012: The use of fly ash as sorbents for heavy metals. Przemysł Chemiczny, 91(2), 189-192 [in Polish].
  44. Schutter, M. E., & Fuhrmann, J. J. (2001). Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biology and Biochemistry 33(14), 1947-1958.10.1016/S0038-0717(01)00123-7
  45. Singh, S. D. C. & Shea, P. J. (1999). Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science and Technology, 33(9), 1488-1494. DOI: 10.1021/es9806175.10.1021/es9806175
  46. Sparks, D. L. (1995). Environmental soil chemistry. Academic Press Inc. San Diego, California: 267 p. Stevens, G., & Dunn, D. (2004). Fly ash as a liming material for cotton. Journal of Environmental Quality, 33(1), 343-348. DOI: 10.2134/jeq2004.0343.10.2134/jeq2004.0343
  47. Szymańska, I. (2013). Combustion By-Products - waste, product, raw material. www.surowiec-naturalne.pl [in Polish]
  48. Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B., (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38(3), 937-944. DOI: 10.1021/es0348750.10.1021/es034875014968886
  49. Thomas, G.W. (1982): Exchangeable cations. (p. 159-165). Methods of Soil Analysis, Part 2. Chemical and Microbial Properties (No. 9), ASA-SSSA. Second Edition. Edited by Page A. L., Miller, R. H. & Keeney D.R. Madison, Wisconsin, USA10.2134/agronmonogr9.2.2ed.c9
  50. Terzano, R., Spagnuolo, M., Medici, L., & Ruggiero, P. (2004). Stabilization of Cu and Cd in the presence of montmorillonite by means of coal fly ash. Fresenius Environmental Bulletin 13(10), 995-999.
  51. Ulmanu, M., Matsi, T., Anger, I., Gament, E., Olanescu, G., Predescu, C., Sohaciu, M. (2007). The remedial treatment of soil polluted with heavy metals using fly ash. University Politehnica București Scientific Bulletin B/69(2), 109-116.
  52. Wei, Y. L., Yang, Y. W. & Cheng, N. (2001). Study of thermally immobilized Cu in analogue minerals of contaminated soils. Environmental Science and Technology, 35(2), 416-421. DOI: 10.1021/es0008721.10.1021/es000872111347619
  53. Właśniewski, S. (2009). Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Ochrona Środowiska i Zasobów Naturalnych, 41, 479-488.
  54. Xiao, R., Chen, X., Wang, F., & Yu, G. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36, 244-249. DOI: 10.1016/j.renene.2010.06.027.10.1016/j.renene.2010.06.027
DOI: https://doi.org/10.1515/mipo-2017-0016 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 127 - 143
Submitted on: May 2, 2017
Accepted on: Aug 31, 2017
Published on: Dec 1, 2017
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Jean Diatta, Edward Fojcik, Leszek Drobek, Tomasz Spiżewski, Włodzimierz Krzesiński, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.