Have a personal or library account? Click to login
Efficiency of Pb(II) and Mo(VI) Removal by Kaolinite Impregnated with Zero-Valent Iron Particles Cover

Efficiency of Pb(II) and Mo(VI) Removal by Kaolinite Impregnated with Zero-Valent Iron Particles

Open Access
|Dec 2017

References

  1. Arancibia-Miranda, N., Baltazar, S. E., García, A., Romero, A. H., Rubio, M. A., & Altbir, D. (2014). Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Materials Research Bulletin, 59, 341-348. DOI: 10.1016/j.materresbull.2014.07.045.10.1016/j.materresbull.2014.07.045
  2. Azizian, S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. DOI: 10.1016/j.jcis.2004.03.048.10.1016/j.jcis.2004.03.04815219428
  3. Balan, E., Saitta, A. M., Mauri, F., & Calas, G. (2001). First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321-1330. DOI: 10.2138/am-2001-11-1201.10.2138/am-2001-11-1201
  4. Bhattacharyya, K. G., & Gupta, S. S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12(3), 185-204. DOI:10.1007/s10450-006-0145-0.10.1007/s10450-006-0145-0
  5. Bhattacharyya, K. G., & Gupta, S. S. (2007). Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science, 310(2), 411-424. DOI: 10.1016/j.jcis.2007.01.080.10.1016/j.jcis.2007.01.08017368467
  6. Crane, R., & Scott T. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. DOI: 10.1016/j.jhazmat.2011.11.073.10.1016/j.jhazmat.2011.11.07322305041
  7. Erdem, E., Karapinar, N., & Donat R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280( 2), 309-314. DOI: 10.1016/j.jcis.2004.08.028.10.1016/j.jcis.2004.08.02815533402
  8. Grieger, K., Fjordbøge, A., Hartmann, N., Eriksson, E., Bjerg, P., & Baun A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 118, 165-183. DOI: 10.1016/j.jconhyd.2010.07.011.10.1016/j.jconhyd.2010.07.01120813426
  9. Hudcova, B., Veselska, V., Filip, J., Cíhalova, S., & Komarek M. (2016). Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis. Chemosphere, 168, 539-548. DOI: 10.1016/j.chemosphere.2016.11.031.10.1016/j.chemosphere.2016.11.03127839879
  10. Kim, S. A., Kamala - Kannan, S., Lee, K.- J., Park, Y.- J., Shea, P. J., Lee, W.- H., Kim, H.- M., & Oh, B.- T. (2013). Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54-60. DOI: 10.1016/j.cej.2012.11.097.10.1016/j.cej.2012.11.097
  11. Koteja, A., Biskup, I., Góra, K., & Matusik, J. (2015). Organo-kaolinite as an adsorbent of Cr(III) and Ni(II) ions. In Bajda T., Hycnar E., (Eds.) Sorbenty mineralne 2015: surowce, energetyka, ochrona środowiska, nowoczesne technologie, 131-143, Kraków, Wydawnictwo AGH.
  12. Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science, 455, 83-92. DOI: 10.1016/j.jcis.2015.05.027.10.1016/j.jcis.2015.05.027
  13. Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39, 1729-1740. DOI: 10.1016/j.watres.2005.02.012.10.1016/j.watres.2005.02.012
  14. Li, S., Wang, W., Liang, F., & Zhang, W. (2016). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials, 322, 163-171. DOI: 10.1016/j.jhazmat.2016.01.032.10.1016/j.jhazmat.2016.01.032
  15. Liu, J., Yuan, S. W., Du, H. Y., & Jiang, X. Y. (2014). Adsorption of Cd(II) from Aqueous Solution by Magnetic Graphene. Advanced Materials Research, 881-883, 1011-1014. DOI: 10.4028/www.scientific.net/AMR.881-883.1011.10.4028/www.scientific.net/AMR.881-883.1011
  16. Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244-253. DOI: 10.1016/j.cej.2014.03.004.10.1016/j.cej.2014.03.004
  17. Meunier, N., Drogui, P., Montane, C., Hausler, R., Mercier, G., & Blais, J. F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137, 581-590. DOI: 10.1016/j.jhazmat.2006.02.05010.1016/j.jhazmat.2006.02.050
  18. Oehmen, A., Viegas, R., Velizarov, S., Reis, M. A. M., & Crespo, J. G. (2006). Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination, 199, 405-407. DOI: 10.1016/j.desal.2006.03.091.10.1016/j.desal.2006.03.091
  19. Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and Pb(II) on activated carbon from Eucalyptus camaldulensis Dehn, bark. Journal of Environmental Sciences, 20, 1028-1034. DOI: 10.1016/S1001-0742(08)62145-2.10.1016/S1001-0742(08)62145-2
  20. Ponder, S., Darab, J., & Mallouk, T. (2000). Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 34, 2564-2569. DOI: 10.1021/es9911420.10.1021/es9911420
  21. Prabu, D., & Parthiban, R. (2013). Synthesis and characterization of nanoscale zero-valent iron (NZVI) nanoparticles for environmental remediation. Asian Journal of Pharmacy and Technology, 3(4), 181-184.
  22. Ramos, M. A. V., Yan, W. L., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113, 14591-14594. DOI:10.1021/jp9051837.10.1021/jp9051837
  23. Ren, X. M., Li, J. X., Tan, X. L., & Wang, X. K. (2013). Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions, 42, 5266-5274. DOI: 10.1039/C3DT32969K.10.1039/C3DT32969
  24. Rui, M., Buruberri, L. H., Seabra, M. P., & Labrincha, J. A. (2016). Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters, Journal of Hazardous Materials, 318, 631-640. DOI: 10.1016/j.jhazmat.2016.07.059.10.1016/j.jhazmat.2016.07.059
  25. Rybka, K. (2017). Efektywność oczyszczania roztworów wodnych z wybranych anionów przez nanokompozyty otrzymane na bazie kaolinitu ze złoża Maria III, (Efficiency of selected anions removal from aqueous solutions by nanocomposites derived from Maria III kaolinite.), MSc thesis, AGH University of Science and Technology, Krakow, Poland. [in Polish].
  26. Saada, A., Breeze, D., Crouzet, C., Cornu, S., & Baranger , P. (2003). Adsorption of arsenic(V) on kaolinite and on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere, 51(8), 757-763. DOI: 10.1016/S0045-6535(03)00219-4.10.1016/S0045-6535(03)00219-4
  27. Scott, T. B., Popescu, I. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of hazardous materials, 186, 280-287. DOI: 10.1016/j.jhazmat.2010.10.113.10.1016/j.jhazmat.2010.10.113
  28. Suraj, G., Iyer, C. S. P., & Lalithambika, M. (1998). Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science, 13(4), 293-306. DOI: 10.1016/S0169-1317(98)00043-X.10.1016/S0169-1317(98)00043-X
  29. Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI: 10.1016/j.micromeso.2014.09.033.10.1016/j.micromeso.2014.09.033
  30. Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong L. X. (2008). Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy, 93, 1-9. DOI: 10.1016/j.hydromet.2008.02.009.10.1016/j.hydromet.2008.02.009
  31. Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Hallam, K. R., Scott, T. B., & Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 43(2), 172-181. DOI: 10.1016/j.clay.2008.07.030.10.1016/j.clay.2008.07.030
  32. Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Lieberwirth, I., Scott, T. B., Hallam, K. R. (2008). Application of zerovalent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. The Chemical Engineering Journal, 144(2), 213-220. DOI: 10.1016/j.cej.2008.01.024.10.1016/j.cej.2008.01.024
  33. Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBS. Environmental Science & Technology, 31, 2154-2156. DOI: 10.1021/es970039c.10.1021/es970039c
  34. Wang, J., Liu, G., Li, T., Zhou, C., & Qi, C. (2015). Zero-Valent Iron Nanoparticles (NZVI) Supported by Kaolinite for CuII and NiII Ion Removal by Adsorption: Kinetics, Thermodynamics, and Mechanism. Australian Journal of Chemistry., 68, 1305-1315. DOI: 10.1071/CH14675.10.1071/CH14675
  35. Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 154, 1-3, 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.10.1016/j.jhazmat.2007.10.059
  36. Yan, W., Ramos, M. A. V., Koel, B. E., &. Zhang, W. X. (2012). As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron microscopy. Journal of Physical Chemistry C, 116, 5303-5311. DOI: 10.1021/jp208600n.10.1021/jp208600n
  37. You, Y., Vance, G. F., & Zhao, H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science, 20, 13-25. DOI: 10.1016/S0169-1317(00)00043-0.10.1016/S0169-1317(00)00043-0
  38. Zachara, J. M., Cowan, C. E., Schmidt, R. L., & Ainsworth, C. C. (1988). Chromate adsorption on kaolinite. Clays and Clay Minerals, 36(4), 317-326. DOI: 10.1346/CCMN.1988.0360405.10.1346/CCMN.1988.0360405
  39. Zhang, Y.-Y., Jiang, H., Zhang, Y., & Xie, J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412-419. DOI: 10.1016/j.cej.2013.06.031.10.1016/j.cej.2013.06.031
  40. Zhang, X., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2010). Kaolinite supported nanoscale zero-valent iron for removal of Pb 2 from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45(11), 3481-3488. DOI: 10.1016/j.watres.2011.04.010.10.1016/j.watres.2011.04.01021529878
  41. Zhang, X., Lin, S., Lu, X.Q., & Chen, Z. L. (2010). Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. The Chemical Engineering Journal 163(3), 243-248. DOI: 10.1016/j.cej.2010.07.056.10.1016/j.cej.2010.07.056
  42. Zhang, S. Q., & Hou, W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320(1-3), 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.10.1016/j.colsurfa.2008.01.038
  43. Zondervan, E., & Roffel, B. (2007). Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water. Journal of Membrane Science, 304, 40-49. DOI: 10.1016/j.memsci.2007.06.041.10.1016/j.memsci.2007.06.041
DOI: https://doi.org/10.1515/mipo-2017-0013 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 71 - 86
Submitted on: Apr 13, 2017
Accepted on: Aug 29, 2017
Published on: Dec 1, 2017
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Karolina Rybka, Katarzyna Suwała, Paulina Maziarz, Jakub Matusik, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.