Have a personal or library account? Click to login
Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes Cover

Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes

Open Access
|Dec 2017

References

  1. Atkins, M., Glasser, F. P., & Jack J. J. (1995). Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species. Waste Management, 15 (2), 127-135. DOI: 10.1016/0956-053X(95)00015-R.10.1016/0956-053X(95)00015-
  2. Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.10.1016/j.fuel.2015.01.067
  3. Bieganowski, A., Łagód, G., Ryżak, M., Montusiewicz, A., Chomczyńska, M., & Sochan, A. (2012). Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S, 19 (4), 597-608. DOI: 10.2478/v10216-011-0042-7.10.2478/v10216-011-0042-7
  4. Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.10.1016/S1387-1811(03)00354-8
  5. Chałupnik, S., Franus, W., Wysocka, M., & Gzyl, G. (2013). Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research, 20, 7900-7906. DOI: 10.1007/s11356-013-1877-5.10.1007/s11356-013-1877-5
  6. Charkhi, A., Kazemeini, M., Ahmadi, S. J., & Kazemian, H. (2012). Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technology , 231, 1-6. DOI: 10.1016/j.powtec.2012.06.041.10.1016/j.powtec.2012.06.041
  7. Czurda, K. A., & Haus, R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science, 21, 13-20. DOI: 10.1016/S0169-1317(01)00088-6.10.1016/S0169-1317(01)00088-6
  8. De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34 (9), 1001-1008. DOI: 10.1016/j.cemconcomp.2012.06.008.10.1016/j.cemconcomp.2012.06.008
  9. Ejsymont, J., Łaptaś, A., & Steciu, Z. (1975). PL80674. Sposób zabezpieczenia zeolitów przed zmianami własności w procesie formowania, Patent - PL80674, 1975. [in Polish]
  10. Ejsymont, J., & Witek, E. (1986). Sposób granulowania zeolitów syntetycznych, Patent - PL131352, 1986. [in Polish]
  11. Ejsymont, J., Witek, E., & Łaptaś, A. (1981). PL103530. Sposób otrzymywania kształtek zeolitów syntetycznych, Patent - PL 103530, 1981. [in Polish]
  12. Franus, W. (2012). Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies, 21 (2), 337-343.
  13. Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resource Management, 26, 133-148.
  14. Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.10.1007/s10661-014-3815-5411205324838802
  15. Gara, P., Hryniewicz, M., & Wisła-Walsh, E. (2008). New high surface area calcareous sorbent produced in mechanical operations. Polish Journal of Environmental Studies, 17 (3A), 198-202.
  16. Jagielska, E. M., Berak, J., Bazarnik, A., Kazimierczuk, R., & Apczyńsk, J. (1988). PL140558. Sposób formowania zeolitów, Patent - PL140558, 1988. [in Polish]
  17. Kim, K-J, & Ahn, H-G. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Materials, 152, 78-83. DOI: 10.1016/j.micromeso.2011.11.051.10.1016/j.micromeso.2011.11.051
  18. Klinik, J. (2000). Tekstura porowatych ciał stałych. Kraków: Ośrodek Edukacji Niestacjonarnej Akademia Górniczo-Hutnicza. [in Polish]
  19. Knight, P. C. (2001). Structuring agglomerated products for improved performance. Powder Technology, 119 (1), 14-25. DOI: 10.1016/S0032-5910(01)00400-4.10.1016/S0032-5910(01)00400-4
  20. Kurdowski, W. (2010). Chemia cementu i betonu, Warszawa: Wydawnictwo naukowe PWN. [in Polish]
  21. Lipkind, B. A., Valuiskaya, O. M., Kanakova, O. A., Nefedov, B. K. (1987). Forming of synthetic zeolites with binder additives into microbead granules. Chemistry and Technology of Fuels and Oils, 23(10), 476-478. DOI: 10.1007/BF00724830.10.1007/BF00724830
  22. Lippens, B. C., & de Boer, J. H. (1965). Studies on pore systems in catalysts. V. The t method. Journal of Catalysis, 4, 319-323. DOI: 10.1016/0021-9517(65)90307-6.10.1016/0021-9517(65)90307-6
  23. Lippens, B. C., Linsen, B. G., & de Boer, J. H. (1964). Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 3, 32-37. DOI: 10.1016/0021-9517(64)90089-2.10.1016/0021-9517(64)90089-2
  24. Majchrzak-Kucęba, I. (2011). Mikroporowate i mezoporowate materiały z popiołów lotnych. Monografie Politechniki Częstochowskiej, 201, (pp. 1-208). Częstochowa : Wydaw. Politechniki Częstochowskiej. [in Polish]
  25. Manikandan, R., & Ramamurthy, K. (2007). Influence of fineness of fly ash on the aggregate pelletization process. Cement and Concrete Composites, 29(6), 456-464. DOI: 10.1016/j.cemconcomp.2007.01.002.10.1016/j.cemconcomp.2007.01.002
  26. Matsi, T., & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environmental Pollution, 104, 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.10.1016/S0269-7491(98)00145-6
  27. Mehra, A., Farago, M. E., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50(1), 15-35. DOI: 10.1023/A:1005860015123.10.1023/A:1005860015123
  28. Merrikhpour, H., & Jalali, M. (2012). Comparative and competitive adsorption of cadmium,copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303-316. DOI: 10.1007/s10098-012-0522-1.10.1007/s10098-012-0522-1
  29. Misaelides, P. (2011). Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials, 144, 15-18. DOI: 10.1016/j.micromeso.2011.03.024.10.1016/j.micromeso.2011.03.024
  30. Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.10.1016/S0015-1882(02)80207-5
  31. Northcott, K. A., Bacus, J., Taya, N., Komatsu, Y., Perera, J. M., & Stevens, G. W. (2010). Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water. Journal of Hazardous Materials183, 434-40. DOI: 10.1016/j.jhazmat.2010.07.043.10.1016/j.jhazmat.2010.07.043
  32. Panek, R., Wisła-Walsh, E., Gara, P., & Wdowin, M. (2016).The zeolite-carbon composite as CO2 sorbent. Proceedings - 18th International Zeolite Conference - Zeolites for a Sustainable World, 19 June - 24 June 2016. Rio de Janeiro, Brazil.
  33. Perego, C., Bagatin, R., Tagliabue, M., & Vignola, R. (2013). Zeolites and related mesoporous materials for multitalented environmental solutions. Microporous and Mesoporous Materials, 166, 37-49. DOI: 10.1016/j.micromeso.2012.04.048.10.1016/j.micromeso.2012.04.048
  34. Pietsch, W. (2004). Agglomeration in Industry: Occurence and Applications (1 Ed). Weinheim: Wiley-VCH.10.1002/9783527619795
  35. Remenárová, L., Pipíška, M., Florková, E., Augustín, J., Rozložník, M., Hostin, S., & Horník M. (2014). Radiocesium adsorption by zeolitic materials synthesized from coal fly ash. Nova Biotechnologica et Chimica, 13(1), 57-72. DOI: 10.2478/nbec-2014-0007.10.2478/nbec-2014-0007
  36. Sarbak, Z. (2002). Surface centres for CO adsorption on supported platinum. Adsorption Science & Technology, 20, 347-351. DOI: abs/10.1260/02636170260295533.10.1260/02636170260295533
  37. Scrivener, K. L., & Nonat, A. (2011). Hydration of cementitious materials, present and future. Cement and Concrete Research41(7), 651-665. DOI: 10.1016/j.cemconres.2011.03.026.10.1016/j.cemconres.2011.03.026
  38. Simpson, J. A., & Bowman, R. S. (2009). Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 108, 1-11. DOI: 10.1016/j.jconhyd.2009.05.001.10.1016/j.jconhyd.2009.05.001
  39. Singh, N. B., Rai, S., & Chaturvedi, S. (2002). Hydration of Composite Cement. Progress in Crystal Growth and Characterization of Materials, 45, 171-174. DOI: 10.1016/S0960-8974(02)00045-1.10.1016/S0960-8974(02)00045-1
  40. Sochon, R. P. J., & Salman, A. D. (2010). Particle growth and agglomeration processes. In R. Pohorecki (Eds.), Chemical Engineering and chemical process technology (vol.2) (pp.299-317). Singapore: Eolss Publishers Co. UK.
  41. Srb J., & Ruzickova Z. (1988). Pelletization of Fines (Minerals, Ores, Coal) In D.W. Fuerstenau, Advisory Editor, Developments in Mineral Processing Vol 7 (pp. 292-296). Elsevier Science Publishers B.V., Amsterdam, The Netherlands
  42. Sumer, M. (2012). Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes. Construction and Building Materials, 34, 531-536. DOI: 10.1016/j.conbuildmat.2012.02.023.10.1016/j.conbuildmat.2012.02.023
  43. Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry17, 1143-1148. DOI: 10.1016/S0883-2927(02)00005-7.10.1016/S0883-2927(02)00005-7
  44. Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organozeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI 10.1016/j.micromeso.2014.09.033.10.1016/j.micromeso.2014.09.033
  45. Tharnzil L. (1997). Immobilization of 137Cs on cement-zeolite composites. Waste Treatment and Immobilization Technologies Involving Inorganic Sorbents. Final report IAEA-TECDOC-947. Vienna, Austria: International Atomic Energy Agency, Vienna, 153-162.
  46. Ugal, J. R., Mustafa, M., & Abdulhadi, A. A. (2008). Preparation of zeolite type 13x from locally available raw materials. Iraqi Journal of Chemical and Petroleum Engineering, 9(1), 51-56.10.31699/IJCPE.2008.1.8
  47. Vignola, R., Bagatin, R., De Folly D’Auris, A., Flego, C., Nalli, M., Ghisletti, D. (2011). Zeolites in a permeable reactive barrier (PRB): one year of field experience in a refinery groundwater-Part 1: The performances. Chemical Engineering Journal178, 204-209. DOI: 10.1016/j.cej.2011.10.050.10.1016/j.cej.2011.10.050
  48. Wajszel, D. (1982). PL113134. Sposób formowania granule zeolitowych zwłaszcza o wymiarze ziaren 0,6 - 1,0 mm, Patent - PL113134 1982. [in Polish]
  49. Wdowin, M., Franus, M., Panek, R., Bandura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. DOI: 10.1007/s10098-014-0719-6.10.1007/s10098-014-0719-6
  50. Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734
  51. Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens, Lee A., Wojciech, F., & Snape, C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.10.1016/j.fuel.2014.03.041
  52. Wdowin, W., Macherzyński, M., Panek, R., Górecki, J., & Franus, W. (2015). Investigation of the mercury vapour sorption from exhaust gas by an Ag-X zeolite. Clay Minerals, 50(1), 31-40. DOI: 10.1180/claymin.2015.050.1.04.10.1180/claymin.2015.050.1.04
  53. Wisła-Walsh, E., Mięso, R., & Sikora, W.S. (1999). Research into fly ash agglomeration process and physicochemical properties of pellets. Mineralogia Special Papers, 13, (pp.100-120). Kraków: Mineralogical Society of Poland.
  54. Yang, R., Liao, W-P., & Wu, P-H. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management 104, 67-76. DOI: 10.1016/j.jenvman.2012.03.008.10.1016/j.jenvman.2012.03.008
  55. Yoo, J. G., & Jo, Y. M. (2003). Finding the optimum binder for fly ash pelletization. Fuel Processing Technology 81(3), 173-186. DOI: 10.1016/S0378-3820(03)00011-0.10.1016/S0378-3820(03)00011-0
  56. Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., & Tian, B. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111-121. DOI: 10.1016/j.desal.2010.12.021.10.1016/j.desal.2010.12.021
DOI: https://doi.org/10.1515/mipo-2017-0008 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 3 - 22
Submitted on: Apr 5, 2017
Accepted on: Jul 30, 2017
Published on: Dec 1, 2017
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Rafał Panek, Magdalena Wdowin, Lidia Bandura, Ewa Wisła-Walsh, Paweł Gara, Wojciech Franus, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.