Have a personal or library account? Click to login
Fine and ultrafine TiO2 particles in aerosol in Kraków (Poland) Cover

Fine and ultrafine TiO2 particles in aerosol in Kraków (Poland)

Open Access
|Oct 2015

References

  1. About Titanium Dioxide, Titanium Dioxide Manufacturers Association. http://www.tdma.info (10.03.2015).
  2. Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., & Nowack, B. (2013). Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Science: Processes & Impacts, 15(12), 2186-2193. DOI: 10.1039/c3em00331k.10.1039/c3em00331k
  3. Auffan, M., Pedeutour, M., Rose, J., Masion, A., Ziarelli, F., Borschneck, D., Chaneac, C., Botta, C., Chaurand, P., Labille, J., & Bottero J.-Y. (2010). Structural Degradation at the Surface of a TiO2-Based Nanomaterial used in Cosmetics. Environmental Science and Technology, 44, 2689-2694. DOI: 10.1021/es903757q.10.1021/es903757q
  4. Banfield, J. F., & Navrotsky, A. (Eds.), 2001. Nanoparticles and the Environment. Reviews in Mineralogy and Geochemistry, 44, 349p.10.2138/rmg.2001.44.0
  5. Bernhardt, E. S., Colman, B. P., Hochella, M. F., Cardinale, B. J., Nisbet, R. M., Richardson, C. J., & Yin L, (2010). An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality, 39:1-12. DOI:10.2134/jeq2009.0479.10.2134/jeq2009.0479
  6. BéruBé, K., Balharry, D., Sexton, K., Koshy, L., & Jones T. (2007). Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology, 34, 1044-1050. DOI: 10.1111/j.1440-1681.2007.04733.x.10.1111/j.1440-1681.2007.04733.x
  7. Bottero, J.-Y., Auffan, M., Rose, J., Mouneyrac, C., Botta, C., Labille, J., Masion, A., Thill, A., & Chaneac C. (2011). Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus Geoscience, 343, 168-176. DOI: 10.1016/j.crte.2011.01.001.10.1016/j.crte.2011.01.001
  8. Brayner, R. (2008). The toxicological impact of nanoparticles. Nanotoday, 3, 48-55.10.1016/S1748-0132(08)70015-X
  9. Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29, 2587-2595. DOI: 10.1016/j.wasman.2009.04.001.10.1016/j.wasman.2009.04.00119427190
  10. Cardinale, B. J., Bier, R., & Kwan C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticles Research, 14, 913. DOI: 10.1007/s11051-012-0913-6.10.1007/s11051-012-0913-6
  11. Chang, X., Zhang, Yu., Tang, M., & Wang, B. (2013). Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. Nanoscale Research Letters, 8, 51. DOI: 10.1186/1556-276X-8-51.10.1186/1556-276X-8-51359949823351429
  12. Chen, E. Y., Garnica, M., Wang, Y.-C., Mintz, A. J., Chen, C.-S., & Chin, W.-C. (2012). A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology, 9, 2. DOI: 10.1186/1743-8977-9-2.10.1186/1743-8977-9-2
  13. Chen, W., Qian, C., Liu, X.-Y., & Yu, H.-Q. (2014). Two-Dimensional Correlation Spectroscopic Analysis on the Interaction between Humic Acids and TiO2 Nanoparticles. Environmental Science and Technology, 48, 11119-11126. DOI: 10.1021/es502502n.10.1021/es502502n
  14. Christian, P., von der Kammer, F., Baalousha, M., & Hofmann, Th. (2008). Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology, 17, 326-343. DOI: 10.1007/s10646-008-0213-1.10.1007/s10646-008-0213-1
  15. Dawson, N. G. (2008). Sweating the small stuff: Environmental risk and nanotechnology. BioScience, 58, 690. DOI: 10.1641/B580805.10.1641/B580805
  16. Du, W., Sun, Y., Ji, R., Zhu, J., Wub, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822-828. DOI: 10.1039/c0em00611d.10.1039/c0em00611d
  17. Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., & Knowland J. (1997). Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Letters 418, 87-90.10.1016/S0014-5793(97)01356-2
  18. Dwivedi, A. D., & Ma, L. Q. (2014). Biocatalytic synthesis pathways, transformation, and toxicity of nanoparticles in the environment. Critical Reviews in Environmental Science and Technology, 44, 1679-1739. DOI: 10.1080/10643389.2013.790747.10.1080/10643389.2013.790747
  19. Elsaesser, A., & Howard C. V. (2012). Toxicology of nanoparticles. Advanced Drug Delivery Reviews, 64, 129-137. DOI: 10.1016/j.addr.2011.09.001.10.1016/j.addr.2011.09.00121925220
  20. Fadeel, B., & Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62, 362-374. DOI: 10.1016/j.addr.2009.11.008.10.1016/j.addr.2009.11.00819900497
  21. Fukuhara, N., Suzuki, K., Takeda, K., & Nihei Y. (2008). Characterization of environmental nanoparticles. Applied Surface Science, 255, 1538-1540. DOI: 10.1016/j.apsusc.2008.05.013.10.1016/j.apsusc.2008.05.013
  22. Gázquez, M. J., Bolívar, J. P., Garcia-Tenorio, R., & Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 5, 441-458. DOI: 10.4236/msa.2014.57048.10.4236/msa.2014.57048
  23. Ge, Y., Schime, l J. P., & Holden, P. A. (2011). Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science and Technology, 45, 1659-1664. DOI: 10.1021/es103040t.10.1021/es103040t21207975
  24. Geiser, M., Stoeger, T., Casaulta, M., Chen, S., Semmler-Behnke, M., Bolle, I., Takenaka, S., Kreyling, W. G., & Schulz, H. (2014). Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Particle and Fibre Toxicology, 24, 11-19. DOI: 10.1186/1743-8977-11-19.10.1186/1743-8977-11-19400849024758489
  25. Göhler, D., Stintz, M., Hillemann L., & Vorbau, M. (2010). Characterization of nanoparticle release from surface coatings by the simulation of a sanding process. Annals of Occupational Hygiene, 54(6), 615-624. DOI: 10.1093/annhyg/meq053.10.1093/annhyg/meq053291849220696941
  26. Grassian, V. H., O’Shaughnessy, P., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397-402. DOI: 10.1289/ehp.9469.10.1289/ehp.9469184991517431489
  27. Grupa Azoty, Tytanpol, 2015. http://tytanpol.com/ (10.03.2015).
  28. Handy, R. D., Owen, R., & Valsami-Jones E. (2008a). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17, 315-325. DOI: 10.1007/s10646-008-0206-0.10.1007/s10646-008-0206-018408994
  29. Handy, R. D., Henry, T. B., Scown, T. M., Johnston, B. D., & Tyler, C. R. (2008b). Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17, 396-409. DOI: 10.1007/s10646-008-0205-1.10.1007/s10646-008-0205-118408995
  30. Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K., & Telling, J. (2013). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 5 (3929), 1-8. DOI: 10.1038/ncomms4929.10.1038/ncomms4929405026224845560
  31. Hochella, M. F. (2008). Nanogeoscience: From origins to cutting-edge applications. Elements, 4(6), 373-379. DOI: 10.2113/gselements.4.6.373.10.2113/gselements.4.6.373
  32. Hochella, M. F., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral manoparticles, and Earth systems. Science, 319, 1631-1635. DOI: 10.1126/science.1141134.10.1126/science.114113418356515
  33. Hu, Y.-L., & Gao, J.-Q. (2010). Potential neurotoxicity of nanoparticles. International Journal of Pharmaceutics, 394, 115-121. DOI: 10.1016/j.ijpharm.2010.04.026.10.1016/j.ijpharm.2010.04.02620433914
  34. Hu, X., Chen, Q., Jiang, L., Yu, Z., Jiang, D., & Yin, D. (2011). Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environmental Pollution, 159, 1151-1158. DOI: 10.1016/j.envpol.2011.02.011.10.1016/j.envpol.2011.02.01121376439
  35. Jabłońska, M. (2003). Skład fazowy pyłów atmosferycznych w wybranych miejscowościach Górnośląskiego Okręgu Przemysłowego [Phase composition of atmospheric dust from selected cities of the Upper Silesia Industrial Region]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 2151. Katowice: Wydawnictwa Uniwersytetu Śląskiego.
  36. Jabłońska, M. (2013). Wskaźnikowe składniki mineralne w tkance płucnej osób narażonych na pyłowe zanieczyszczenia powietrza w konurbacji katowickiej [Indicative mineral components in lung tissue of persons exposed to aerosol atmospheric contaminations in the Katowice Conurbation]. Prace Naukowe Uniwersytetu Śląskiego w Katowicach, Nr 3046. Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  37. Jabłońska, M., Janeczek, J., & Rietmeijer F. J. M. (2003). Seasonal changes in the mineral composition of tropospheric dust in the industrial region of Upper Silesia, Poland. Mineralogical Magazine, 67(6), 1231-1241. DOI: 10.1180/0026461036760161.10.1180/0026461036760161
  38. Jovanović, B., & Guzmán, H. M. (2014). Effects of titanium dioxide (TiO2) nanoparticles on Caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33, 1346-1353. DOI: 10.1002/etc.2560.10.1002/etc.256024677278
  39. Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M., & Boller, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233-239. DOI: 10.1016/j.envpol.2008.08.004.10.1016/j.envpol.2008.08.00418824285
  40. Karlsson, H. L., Gustafsson, J., Cronholm, P., & Möller, L. (2009). Size-dependent toxicity of metal oxide particles - A comparison between nano- and micrometer size. Toxicology Letters, 188, 112-118. DOI: 10.1016/j.toxlet.2009.03.014.10.1016/j.toxlet.2009.03.01419446243
  41. Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998a). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Monitoring of fine-dispersed components of the atmospheric aerosols in Kraków; results of isotopic and geochemical studies. Proceedings of the II International Scientific Conference, „Air protection in theory and applications”, Suchecki T. T., Kapała J., Kumazawa, H. (Eds.), Inst. Env. Engineering of the Polish Academy of Sciences, 203-205.
  42. Kozak, K., Michalik, M., & Wilczyńska-Michalik, W. (1998b). Monitoring drobnozdyspergowanych składników aerozoli atmosferycznych w Krakowie; wyniki badań izotopowych i geochemicznych. Proceedings of the II Intern. Scientific Conerence, „Air protection in theory and applications”, Section III. Transformation and transport of pollutants in the atmosphere/troposphere, Suchecki T. T., Zwoździak J., (Eds.), Polska Akademia Nauk, Instytut Podstaw Inżynierii Środowiska, Komitet Inżynierii Środowiska, Prace i Studia, 48, 207-225.
  43. Krug, H. F. (2014). Nanosafety research - are we on the right track? Some thoughts based on a comprehensive literature review. Angewandte Chemie International Edition, 53, 12304-12319. DOI: 10.1002/anie.201403367.10.1002/anie.20140336725302857
  44. Kumar, P., Robins, A., Vardoulakis, S. & Britter, R. (2010). A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44, 5035-5052. DOI: 10.1016/j.atmosenv.2010.08.016.10.1016/j.atmosenv.2010.08.016
  45. Liu, K., Lin, X., & Zhao, J. (2013). Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. International Journal of Nanomedicine, 8, 2509-2520. DOI: 10.2147/IJN.S46919.10.2147/IJN.S46919372057823901269
  46. Long, T., Saleh, N., Tilton, R., Lowry, G., & Veronesi, B. (2006). Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environmental Science and Technology, 40, 4346-4352. DOI: 10.1021/es060589n.10.1021/es060589n16903269
  47. Manecki A., & Wilczyńska W. (1977). Ocena stanu zanieczyszczenia powietrza atmosferycznego pyłami przemysłowymi. Cz. III. Skład fazowy pyłów atmosferycznych z Krzesławic w Nowej Hucie. [Evaluation of the level of concentration of industrial dusts in the atmosphere. Part III. Mineral composition of dust from Krzesławice in Nowa Huta]. Spraw. z Pos. Kom. Nauk. PAN, Oddz. w Krakowie, 19. [in Polish].
  48. Miller, R. J., Bennett, S., Keller, A. A., Pease, S., & Lenihan, H. S. (2012). TiO2 nanoparticles are phototoxic to marine phytoplankton. Plosone, 7, 1-7. DOI: 10.1371/journal.pone.0030321.10.1371/journal.pone.0030321326281722276179
  49. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372-386. DOI: 10.1007/s10646-008-0214-0.10.1007/s10646-008-0214-018461442
  50. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5-22. DOI:10.1016/j.envpol.2007.06.006.10.1016/j.envpol.2007.06.00617658673
  51. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H., & ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8. DOI: 10.1186/1743-8977-2-8.10.1186/1743-8977-2-8126002916209704
  52. Samek L. (2009). Chemical characterization of selected metals by X-ray fluorescence method in particulate matter collected in the area of Krakow, Poland. Microchemical Journal, 92, 140-144. DOI: 10.1016/j.microc.2009.02.007.10.1016/j.microc.2009.02.007
  53. Samek L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57, 601-606.
  54. Schlich, K., Terytze, K., & Hund-Rinke, K. (2012). Effect of TiO2 nanoparticles in the earthworm reproduction test. Environmental Sciences Europe, 24(5). DOI: 10.1186/2190-4715-24-5.10.1186/2190-4715-24-5
  55. Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2014). Evaluation of the Particle Aerosolization from n-TiO2 Photocatalytic Nanocoatings under Abrasion. Journal of Nanomaterials, 2014, 1-11. DOI: 10.1155/2014/185080.10.1155/2014/185080
  56. Shandilya, N., Le Bihan, O., Bressot, C., & Morgeneyer, M. (2015). Emission of Titanium Dioxide Nanoparticles from Building Materials to the Environment by Wear and Weather. Environmental Science and Technology, 49, 2163-2170 DOI: 10.1021/es504710p.10.1021/es504710p25590625
  57. Shukla, R. K., Kumar, A., Gurbani, D., Pandey, A. K., Singh S., & Dhawan A. (2013). TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology, 7(1), 48-60. DOI: 10.3109/17435390.2011.629747.10.3109/17435390.2011.62974722047016
  58. Stoeger, T., Reinhard, C., Takenaka, S., Schroeppel, A., Karg, E., Ritter, B., Heyder, J., & Schulz, H. (2006). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives, 114(3), 328-333.10.1289/ehp.8266139222416507453
  59. Tucci, P., Porta, G., Agostini, M., Dinsdale, D., Iavicoli, I., Cain, K., Finazzi-Agro, A., Melino, G., & Willis, A. (2013). Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death and Disease, 4, e549. DOI: 10.1038/cddis.2013.76.10.1038/cddis.2013.76
  60. Wang, C.-S., Friedlander, S. K., & Mädler, L. (2005). Nanoparticle aerosol science and technology: an overview. China Particuology, 3, 243-254. DOI: 10.1016/S1672-2515(07)60196-1.10.1016/S1672-2515(07)60196-1
  61. Warheit, D. B. (2004). Nanoparticles: health impacts? Materials Today, 7(2), 32-35. DOI: 10.1016/S1369-7021(04)00081-1.10.1016/S1369-7021(04)00081-1
  62. Wilczyńska-Michalik, W., Tyrała, L., Borowiec, W., Damrat, M., Michalik, M. (2010a). Composition and source of aerosols in Kraków (S Poland). 20th General Meeting of the International Mineralogical Association, Budapest, 21-27 August 2010, Acta Mineralogica-Petrographica, Abstract Series, 21-27 August, 2010, 321.
  63. Wilczyńska-Michalik, W., Damrat, M., Tyrała, Ł., Borowiec, W., Michalik, M. (2010b). Single particle analysis of aerosols in Kraków (Poland). Mineralogia, Special Papers, 36, 86.
  64. Wilczyńska-Michalik, W., & Michalik M. (2015). Skład i pochodzenie cząstek pyłów w powietrzu atmosferycznym w Krakowie [Composition and origin of dust particles in atmosphere in Kraków], Aura, 3, 4-8. [in Polish, English summary].
  65. Windler, L., Lorenz, C., von Goetz, N., Hungerbühler, K., Amberg, M., Heuberger, M., & Nowack, B. (2012). Release of Titanium Dioxide from Textiles during Washing. Environmental Science and Technology, 46, 8181-8188. DOI: 10.1021/es301633b.10.1021/es301633b
  66. Worobiec, A., Stefaniak, E.A., Kontozova, V., Samek, L., Karaszkiewicz, P., Van Meel, K., & Van Grieken R. (2006). Characterization ofm individual atmospheric particles within the Royal Museum of the Wawel Castle in Cracow, Poland. e-Preservation Science, 3, 63-68.
  67. Wróbel, A., Rokita, U. E., & Maenhaut, W. (2000). Transport of traffic-related aerosols in urban areas. The Science of the Total Environment, 257, 199-211. DOI: 10.1016/S0048-9697(00)00519-2.10.1016/S0048-9697(00)00519-2
  68. Zhu, X., Zhou, J., & Cai, Z. (2011). TiO2 Nanoparticles in the marine environment: Impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) Embryos. Environmental Science and Technology, 45, 3753-3758. DOI: 10.1021/es103779h.10.1021/es103779h21413738
DOI: https://doi.org/10.1515/mipo-2015-0005 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 65 - 77
Submitted on: Apr 6, 2015
Accepted on: Aug 10, 2015
Published on: Oct 29, 2015
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Wanda Wilczyńska-Michalik, Kamil Rzeźnikiewicz, Bartłomiej Pietras, Marek Michalik, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.