Have a personal or library account? Click to login
Nanoindentation Response Analysis of Thin Film Substrates-II: Strain Hardening-Softening Oscillations in Subsurface Layer Cover

Nanoindentation Response Analysis of Thin Film Substrates-II: Strain Hardening-Softening Oscillations in Subsurface Layer

By: Uldis Kanders and  Karlis Kanders  
Open Access
|May 2017

References

  1. 1. Fischer-Cripps, A. (2004). Nanoindentation. New York: Springer-Verlag.10.1007/978-1-4757-5943-3
  2. 2. Oyen, M.L., & Cook, R.F. (2009). A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed., 2, 396–407.10.1016/j.jmbbm.2008.10.002
  3. 3. Guo, Y.B., & Warren, A.W. (2005). Microscale mechanical behavior of the subsurface by finishing processes. J. Manuf. Sci. Eng., 126, 333–338.10.1115/1.1807853
  4. 4. Warren, A.W., Guo, Y.B., & Weaver, M.L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surf. Coat. Tech., 200, 3459–3467.10.1016/j.surfcoat.2004.12.028
  5. 5. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., & Schmid, C.F. (2006). Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA, 103, 6184–6189.10.1073/pnas.0601744103
  6. 6. Sangwal, K. (2000). On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys., 63, 145–152.10.1016/S0254-0584(99)00216-3
  7. 7. Kanders, U., & Kanders, K. (2017). Nanoindentation response analysis of thin film substrates-I: Strain gradient-divergence approach. Latv. J. Phys. Tech. Sci., 54(1), 66–76, DOI: 10.15.15/lpts-2017-000710.1515/lpts-2017-0007
  8. 8. Klaumuenzer, D., Maass, R., & Loeffler, J.F. (2011). Stick-slip dynamics and recent insights into shear banding. J. Mater. Res., 26, 1453–1463.10.1557/jmr.2011.178
  9. 9. Schuh, C.A., & Nieh, T.G. (2003). A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater., 51, 87–99.10.1016/S1359-6454(02)00303-8
  10. 10. Chakraborty, R., Dey, A., & Mukhopadhyay, A.K. (2010). Loading rate effect on nanohardness of soda-lime-silica glass. Metall. Mater. Trans. A 41, 1301–1312.10.1007/s11661-010-0176-8
  11. 11. Hay, J.L., Agee, P., & Herbert, E.G. (2010). Continuous stiffness measurement during instrumented indentation testing. Exp. Techniques, 34, 86–94.10.1111/j.1747-1567.2010.00618.x
  12. 12. Oliver, W., & Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res., 19, 3–20.10.1557/jmr.2004.19.1.3
  13. 13. Li, H., Ngan, A.H.W., & Wang, M.G. (2005). Continuous strain bursts in crystalline and amorphous metals during plastic deformation by nanoindentation. J. Mater. Res., 20, 3072–3081.10.1557/JMR.2005.0379
  14. 14. Maniks, J., Mitin, V., Kanders, U., Kovalenko, V., Nazarovs, P., Baitimirova, M., Meija, R., Zabels, R., Kundzins, K., & Erts, D. (2015). Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Tech., 276, 279–285.10.1016/j.surfcoat.2015.07.004
  15. 15. Kanders, U., Kanders, K., Maniks, J., Mitin, V., Kovalenko, V., Nazarovs, P., & Erts, D. (2015). Nanoindentation response analysis of Cu-rich carbon–copper composite films deposited by PVD technique. Surf. Coat. Tech., 280, 308–316.10.1016/j.surfcoat.2015.08.045
  16. 16. Siu, K.W., & Ngan, A.H.W. The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag., 93, 449–467.10.1080/14786435.2012.722234
  17. 17. Beilby, G. (1921). Aggregation and Flow of Solids. London: Macmillan.
  18. 18. Bhushan, B. (Ed.) (2001). Modern Tribology Handbook. CRC Press.
  19. 19. Lloyd, S.J., Castellero, A., Giuliani, F., Long, Y., McLaughlin, K.K., Molina-Aldareguia, J.M., Stelmashenko, N.A., Vandeperre, L.J., & Clegg, W.J. (2005). Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc. A, 461, 2521–2543.10.1098/rspa.2005.1470
  20. 20. Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., & Embury, J.D. (1998). Structure and mechanical properties of Cu-X (X= Nb, Cr, Ni) nanolayered composites. Scripta Mater., 39, 555–560.10.1016/S1359-6462(98)00196-1
DOI: https://doi.org/10.1515/lpts-2017-0011 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 34 - 45
Published on: May 22, 2017
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Uldis Kanders, Karlis Kanders, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.