We have extracted stress-strain field (SSF) gradient and divergence representations from nanoindentation data sets of bulk solids often used as thin film substrates: bearing and tooling steels, silicon, glasses, and fused silica. Oscillations of the stress-strain field gradient and divergence induced in the subsurface layer by the nanoindentation have been revealed. The oscillations are especially prominent in single indentation tests at shallow penetration depths, h<100 nm, whereas they are concealed in the averaged datasets of 10 and more single tests. The amplitude of the SSF divergence oscillations decays as a sublinear power-law when the indenter approaches deeper atomic layers, with an exponent −0.9 for the steel and −0.8 for the fused silica. The oscillations are interpreted as alternating strain hardening-softening plastic deformation cycles induced in the subsurface layer under the indenter load.
© 2017 Uldis Kanders, Karlis Kanders, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.