Have a personal or library account? Click to login
The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications Cover

The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications

Open Access
|Feb 2018

References

  1. Aagaard, P., Helgeson, H.C., 1982. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, 1. Theoretical considerations. Am. J. Sci., 282, 237–285.10.2475/ajs.282.3.237
  2. Amos, R.T., Mayer, K.U., 2006. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. J. Cont. Hydrol., 87, 123–154.10.1016/j.jconhyd.2006.04.008
  3. Appelo, C.A.J., Parkhurst, D.L., Post, V.E.A., 2014. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures. Geochim. Cosmochim. Acta, 125, 49–67.10.1016/j.gca.2013.10.003
  4. Appelo, C.A.J., Wersin, P., 2007. Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. Env. Sci. Tech., 41, 5002–5007.10.1021/es0629256
  5. Batlle-Aguilar, J., Brovelli, A., Porporato, A., Barry, D.A., 2011. Modelling soil carbon and nitrogen cycles during land use change: A review. Agron. Sust. Devel., 31, 251–274.10.1051/agro/2010007
  6. Bennacer, L., Ahfir, N.D., Alem, A., Wang, H.Q., 2017. Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp. Por. Med., 118, 251–269.10.1007/s11242-017-0856-6
  7. Bessinger, B.A., Marks, C.D., 2010. Treatment of mercurycontaminated soils with activated carbon: A laboratory, field, and modeling study. Remed., 21, 115–135.10.1002/rem.20275
  8. Bloom, S.A., Mansell, R.S., 2001. An algorithm for generating cation exchange isotherms from binary selectivity coefficients. Soil Sci. Soc. Am. J., 65, 1426–1429.10.2136/sssaj2001.6551426x
  9. Bond, W.J., 1995. On the Rothmund-Kornfeld description of cation exchange. Soil Sc. Soc. Am. J., 59, 436–443.10.2136/sssaj1995.03615995005900020024x
  10. Borkovec, M., Westall, J., 1983. Solution of the Poisson-Boltzmann equation for surface excesses of ions in the diffuse layer at the oxide electrolyte interface. J. Elect. Chem., 150, 325–337.10.1016/S0022-0728(83)80214-9
  11. Bozorg, A., Gates, I.D., Sen, A., 2015a. Impact of biofilm on bacterial transport and deposition in porous media. J. Cont. Hydrol.,183, 109–120.10.1016/j.jconhyd.2015.10.00826583740
  12. Bozorg, A., Gates, I.D., Sen, A., 2015b. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties. J. Microb. Meth., 109, 84–92.10.1016/j.mimet.2014.11.01525479429
  13. Braakhekke, M.C., Beer, C., Hoosbeek, M.R., Reichstein, M., Kruijt, B., Schrumpf, M., Kabat, P., 2011. SOMPROF: A vertically explicit soil organic matter model. Ecol. Mod., 222, 1712–1730.10.1016/j.ecolmodel.2011.02.015
  14. Brantley, S., Goldhaber, M.B., Ragnarsdottir, K.V., 2007. Crossing disciplines and scales to understand the critical zone. Elements, 3, 307–314.10.2113/gselements.3.5.307
  15. Brooks, R.H., Corey, A., 1964. Hydraulic properties of porous media. Hydrol. Paper No. 3, Colorado State Univ., Fort Collins, CO.
  16. Carles Brangarí, A., Sanchez-Vila, X., Freixa, A., M. Romaní, A., Rubol, S., Fernàndez-Garcia, D., 2017. A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resour. Res., 53, 93–109.10.1002/2015WR018517
  17. Charlton, S.R., Parkhurst, D.L., 2011. Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comp. & Geosc., 37, 1653–1663.10.1016/j.cageo.2011.02.005
  18. Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 30, 211–223.10.1029/93WR02676
  19. Dzombak, D.A., Morel, F.M.M., 1990. Surface Complexation Modeling – Hydrous Ferric Oxide. John Wiley, New York.
  20. Freedman, V.L., Bacon, D.H., Saripalli, K.P., Meyer, P.D., 2004. A film depositional model of permeability for mineral reactions in unsaturated media. Vadose Zone J., 3, 1414–1424.10.2136/vzj2004.1414
  21. Greskowiak, J., Gwo, J., Jacques, D., Yin, J., Mayer, K.U., 2015. A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI). Comp. Geosc., 19, 585–597.10.1007/s10596-014-9457-4
  22. Guggenheim, E.A., 1937. Theoretical basis of Raoult's law. Trans. Faraday Soc., 33, 151–159.10.1039/tf9373300151
  23. Haggerty, R., Gorelick, S.M., 1995. Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res., 31, 2383–2400.10.1029/95WR10583
  24. Hiemstra, T., VanRiemsdijk, W.H., 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Col. Int. Sci., 179, 488–508.10.1006/jcis.1996.0242
  25. Hommel, J., Lauchnor, E., Phillips, A., Gerlach, R., Cunningham, A.B., Helmig, R., Ebigbo, A., Class, H., 2015. A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments. Water Resour. Res., 51, 3695–3715.10.1002/2014WR016503
  26. Jacques, D., 2009. Benchmarking of the cement model and detrimental chemical reactions including temperature dependent parameters. Project near surface disposal of category A waste at Dessel, NIRAS-MP5-03 DATA-LT(NF) Version 1.
  27. Jacques, D., Šimůnek, J., 2005. User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. SCK•CEN-BLG-998.
  28. Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2006. Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Contam. Hydrol., 88, 197–218.10.1016/j.jconhyd.2006.06.00816919364
  29. Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2008a. Modeling coupled hydrologic and chemical processes: Long-term uranium transport following phosphorus fertilization. Vadose Zone J., 7, 698–711.10.2136/vzj2007.0084
  30. Jacques, D., Šimůnek, J., Mallants, D., van Genuchten, M.T., 2008b. Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma, 145, 449–461.10.1016/j.geoderma.2008.01.009
  31. Jacques, D., Smith, C., Simůnek, J., Smiles, D., 2012. Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. J. Contam. Hydrol., 142–143, 109–125.10.1016/j.jconhyd.2012.03.00822541896
  32. Jarvis, N.J., Taylor, A., Larsbo, M., Etana, A., Rosen, K., 2010. Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. Eur. J. Soil Sci., 61, 24–34.10.1111/j.1365-2389.2009.01209.x
  33. Jenkinson, D.S., Andrew, S.P.S., Lynch, J.M., Goss, J.M., Tinker, P.B., 1990. The turnover of organic carbon and nitrogen in soil. Philosoph. Trans., 329, 361–368.10.1098/rstb.1990.0177
  34. Kosugi, K., 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res., 32, 2697–2703.10.1029/96WR01776
  35. Laliberté, M., 2007. Model for calculating the viscosity of aqueous solutions. J. Chem. Eng. Data, 52, 321-335.10.1021/je0604075
  36. Laliberté, M., Cooper, W.E., 2004. Model for calculating the density of aqueous electrolyte solutions. J. Chem. Eng. Data, 49, 1141–1151.10.1021/je0498659
  37. Leterme, B., Blanc, P., Jacques, D., 2014. A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environ. Sci. Pollut. Res., 12279–12293.10.1007/s11356-014-3135-x24928379
  38. Leterme, B., Jacques, D., 2015. A reactive transport model for mercury fate in contaminated soil-sensitivity analysis. Environ. Sci. Pollut. Res., 22, 16830–16842.10.1007/s11356-015-4876-x26099598
  39. Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E.W., Brantley, S.L., Dietrich, W.E., Mayer, K.U., Steefel, C.I., Valocchi, A., Zachara, J., Kocar, B., McIntosh, J., Tutolo, B.M., Kumar, M., Sonnenthal, E., Bao, C., Beisman, J., 2017. Expanding the role of reactive transport models in critical zone processes. Earth Sci. Rev., 165, 280–301.10.1016/j.earscirev.2016.09.001
  40. Liu, S., Jacques, D., Govaerts, J., Wang, L., 2014. Conceptual model analysis of interaction at a concrete-Boom Clay interface. Phys. Chem. Earth, 70–71, 150–159.10.1016/j.pce.2013.11.009
  41. Maes, N., Wang, L., Hicks, T., Bennett, D., Warwick, P., Hall, T., Walker, G., Dierckx, A., 2006. The role of natural organic matter in the migration behaviour of americium in the Boom Clay - Part I: Migration experiments. Phys. Chem. Earth, 31, 541–547.10.1016/j.pce.2006.04.006
  42. Makselon, J., Zhou, D., Engelhardt, I., Jacques, D., Klumpp, E., 2017. Experimental and numerical investigations of silver nanoparticle transport under variable flow and ionic strength in soil. Envir. Sci. Techn., 51, 2096–2104.10.1021/acs.est.6b0488228177254
  43. Mallants, D., Šimůnek, J., van Genuchten, M.T., Jacques, D., 2017. Simulating the fate and transport of coal seam gas chemicals in variably-saturated soils using HYDRUS. Water, 9, 6, 385.10.3390/w9060385
  44. Manzoni, S., Porporato, A., 2009. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem., 41, 1355–1379.10.1016/j.soilbio.2009.02.031
  45. Martinez, B.C., DeJong, J.T., Ginn, T.R., 2014. Biogeochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comp. Geotech., 58, 1–13.10.1016/j.compgeo.2014.01.013
  46. Mayer, K.U., Alt-Epping, P., Jacques, D., Arora, B., Steefel, C.I., 2015. Benchmark problems for reactive transport modeling of the generation and attenuation of acid rock drainage. Comp. Geosci., 19, 599–611.10.1007/s10596-015-9476-9
  47. Mayer, K.U., Frind, E.O., Blowes, D.W., 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res., 38, 1174, DOI: 1110.1029/2001WR000862.10.1029/2001WR000862
  48. Mays, D.C., Hunt, J.R., 2007. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Envir. Sci. Techn., 41, 5666–5671.10.1021/es062009s
  49. Meysman, F.J.R., Boudreau, B.P., Middelburg, J.J., 2003a. Relations between local, nonlocal, discrete and continuous models of bioturbation. J. Mar. Res., 61, 391–410.10.1357/002224003322201241
  50. Meysman, F.J.R., Boudreau, B.P., Middelburg, J.J., 2005. Modeling reactive transport in sediments subject to bioturbation and compaction. Geochim. Cosmochim. Acta, 69, 3601–3617.10.1016/j.gca.2005.01.004
  51. Meysman, F.J.R., Middelburg, J.J., Herman, P.M.J., Heip, C.H.R., 2003b. Reactive transport in surface sediments. I. Model complexity and software quality. Comp. Geosci., 29, 291–300.10.1016/S0098-3004(03)00006-2
  52. Millington, R.J., Quirk, J.P., 1961. Permeability of porous solids. Trans. Faraday Soc., 57, 1200–1206.10.1039/tf9615701200
  53. Nowack, B., Mayer, K.U., Oswald, S.E., van Beinum, W., Appelo, C.A.J., Jacques, D., Seuntjens, P., Gérard, F., Jaillard, B., Schnepf, A., Roose, T., 2006. Verification and intercomparison of reactive transport codes to describe rootuptake. Plant and Soil, 285, 305–321.10.1007/s11104-006-9017-3
  54. Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv. Wat. Res., 30, 1505–1527.10.1016/j.advwatres.2006.05.025
  55. Paradelo, M., Perez-Rodriguez, P., Fernandez-Calvino, D., Arias-Estevez, M., Lopez-Periago, J.E., 2012. Coupled transport of humic acids and copper through saturated porous media. Eur. J. Soil Sci., 63, 708–716.10.1111/j.1365-2389.2012.01481.x
  56. Parkhurst, D.L., Appelo, C.A.J., 2013. Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Chapter 43 of Section A. Groundwater Book 6, Modeling Techniques.10.3133/tm6A43
  57. Parkhurst, D.L., Wissmeier, L., 2015. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC. Adv. Wat. Res., 83, 176–189.10.1016/j.advwatres.2015.06.001
  58. Patel, R., Phung, Q.T., Seetharam, S.C., Perko, J., Jacques, D., Maes, N., De Schutter, G., Ye, G., van Breugel, K., 2016. Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cem. Con. Res., 90, 52–72.10.1016/j.cemconres.2016.09.015
  59. Peng, D.-Y., Robinson, D.B., 1976. A new two-constant equation of state. Ind. Eng. Chem. Fund., 15, 59–64.10.1021/i160057a011
  60. Phung, Q.T., Maes, N., Jacques, D., De Schutter, G., Ye, G., Perko, J., 2016. Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport. Const. Build. Mat., 114, 333–351.10.1016/j.conbuildmat.2016.03.191
  61. Porporato, A., D'Odorico, P., Laio, F., Rodriguez-Iturbe, I., 2003. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv. Wat. Res., 26, 45–58.10.1016/S0309-1708(02)00094-5
  62. Puigdomènech, I., Rard, J.A., Plyasunov, A.V., Grenthe, I., 1997. Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe, I., PuigdomSnech, I. (Eds.): OECD Nuclear Chemistry, Paris, pp. 427–493.
  63. Riley, W.J., Maggi, F., Kleber, M., Torn, M.S., Tang, J.Y., Dwivedi, D., Guerry, N., 2014. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geosci. Model Dev., 7, 1335–1355.10.5194/gmd-7-1335-2014
  64. Rockhold, M.L., Yarwood, R.R., Niemat, M.R., Bottomley, P.J., Selker, J.S., 2002. Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv. Wat. Res., 25, 477–495.10.1016/S0309-1708(02)00023-4
  65. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.10.1038/nature1038621979045
  66. Seuntjens, P., Nowack, B., Schulin, R., 2004. Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant and Soil, 265, 61–73.10.1007/s11104-005-8470-8
  67. Sharqawy, M.H., Lienhard V, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: A review of existing correlations and data. Desal. Wat. Treat., 16, 354–380.10.5004/dwt.2010.1079
  68. Sierra, C.A., Müller, M., Trumbore, S.E., 2012. Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev., 5, 1045–1060.10.5194/gmd-5-1045-2012
  69. Silberbush, M., Ben-Asher, J., Ephrath, J.E., 2005. A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant and Soil, 271, 309–319.10.1007/s11104-004-3093-z
  70. Šimůnek, J., He, C., Pang, L., Bradford, S.A., 2006. Colloidfacilitated solute transport in variably saturated porous media: Numerical model and experimental verification. Vadose Zone J., 5, 1035–1047.10.2136/vzj2005.0151
  71. Šimůnek, J., Hopmans, J.W., 2009. Modeling compensated root water and nutrient uptake. Ecol. Mod., 220, 505–521.10.1016/j.ecolmodel.2008.11.004
  72. Šimůnek, J., Jacques, D., Šejna, M., van Genuchten, M.T., 2012. The HP2 Program for HYDRUS (2D/3D). A Coupled Code for Simulating Two-Dimensional Variably-Saturated Water Flow, Head Transport, Solute Transport Flow, and Biogeochemistry in Porous Media. (HYDRUS+PHREEQC+2D), Version 1.
  73. Simunek, J., Sejna, M., Saito, H., Sakai, K., van Genuchten, M.T., 2013. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. Version 4.17. HYDRUS Software Series 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA.
  74. Šimůnek, J., van Genuchten, M.T., 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J., 7, 782–797.10.2136/vzj2007.0074
  75. Šimůnek, J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the HYDRUS Computer Software Packages. Vadose Zone J., 15, DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033
  76. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T., 2015. Reactive transport codes for subsurface environmental simulation. Comp. Geosci., 19, 445–478.10.1007/s10596-014-9443-x
  77. Steefel, C.I., DePaolo, D.J., Lichtner, P.C., 2005. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Plan. Sci. Let., 240, 539–558.10.1016/j.epsl.2005.09.017
  78. Tang, J., Riley, W.J., 2015. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions. Nature Clim. Change, 5, 56–60.10.1038/nclimate2438
  79. Tang, J.Y., Riley, W.J., Koven, C.D., Subin, Z.M., 2013. CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application. Geosci. Model Dev., 6, 127–140.10.5194/gmd-6-127-2013
  80. Thaysen, E.M., Jacques, D., Jessen, S., Andersen, C.E., Laloy, E., Ambus, P., Postma, D. and Jakobsen, I., 2014. Inorganic carbon fluxes across the vadose zone of planted andunplanted soil mesocosms. Biogeosci., 11, 7179–7192.10.5194/bg-11-7179-2014
  81. Todd-Brown, K.E.O., Randerson, J.T., Post, W.M., Hoffman, F.M., Tarnocai, C., Schuur, E.A.G., Allison, S.D., 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosci., 10, 1717–1736.10.5194/bg-10-1717-2013
  82. Valdes-Abellan, J., Jiménez-Martínez, J., Candela, L., Jacques, D., Kohfahl, C., Tamoh, K., 2017. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation. J. Hydrol., 549, 114–124.10.1016/j.jhydrol.2017.03.061
  83. van Genuchten, M.T., 1980. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002x
  84. Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M.H., Amelung, W., Aitkenhead, M., Allison, S.D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H.J., Heppell, J., Horn, R., Huisman, J.A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E.C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S.E.A.T.M., Vogel, H.J., Vrugt, J.A., Wöhling, T., Young, I.M., 2016. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15, 1–57.10.2136/vzj2015.09.0131
  85. Vogel, T., Cislerova, M., Hopmans, J.W., 1991. Porous media with linearly variable hydraulic properties. Water Resour. Res., 27, 2735–2741.10.1029/91WR01676
  86. Wissmeier, L., Barry, D.A., 2009. Effect of mineral reactions on the hydraulic properties of unsaturated soils: Model development and application. Adv. Wat. Res., 32, 1241–1254.10.1016/j.advwatres.2009.05.004
  87. Wissmeier, L., Barry, D.A., 2010. Implementation of variably saturated flow into PHREEQC for the simulation of biogeochemical reactions in the vadose zone. Env. Mod. Soft., 25, 526–538.10.1016/j.envsoft.2009.10.001
  88. Wutzler, T., Reichstein, M., 2008. Colimitation of decomposition by substrate and decomposers - a comparison of model formulations. Biogeosci., 5, 749–759.10.5194/bg-5-749-2008
  89. Xie, M., Mayer, K.U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Šimůnek, J., 2015. Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Comp. Geosci., 19, 655–671.10.1007/s10596-014-9458-3
  90. Yarwood, R.R., Rockhold, M.L., Niemet, M.R., Selker, J.S., Bottomley, P.J., 2006. Impact of microbial growth on water flow and solute transport in unsaturated porous media. Water Resour. Res., 42, W10405, 1–11.10.1029/2005WR004550
  91. Yu, C., Muñoz-Carpena, R., Gao, B., Perez-Ovilla, O., 2013. Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling. J. Hydrol., 499, 316–323.10.1016/j.jhydrol.2013.07.004
  92. Zhou, D., Thiele-Bruhn, S., Arenz-Leufen, M.G., Jacques, D., Lichtner, P., Engelhardt, I., 2016. Impact of manure-related DOM on sulfonamide transport in arable soils. J. Contam. Hydrol., 192, 118–128.10.1016/j.jconhyd.2016.07.00527450276
DOI: https://doi.org/10.1515/johh-2017-0049 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 211 - 226
Submitted on: Jul 12, 2017
|
Accepted on: Sep 21, 2017
|
Published on: Feb 6, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Diederik Jacques, Jiří Šimůnek, Dirk Mallants, Martinus Th. van Genuchten, published by Slovak Academy of Sciences, Institute of Hydrology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.