Have a personal or library account? Click to login
Mathematical modeling of groundwater contamination with varying velocity field Cover

Mathematical modeling of groundwater contamination with varying velocity field

Open Access
|Mar 2017

References

  1. Aral, M.M., Liao, B., 1996. Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients. J. Hydrol. Eng., 1, 20–32.10.1061/(ASCE)1084-0699(1996)1:1(20)
  2. Barry, D.A., Sposito, G., 1989. Analytical solution of a convection-dispersion model with time-dependent transport coefficients. Water Resour. Res., 25, 2407–2416.10.1029/WR025i012p02407
  3. Basha, H.A., El-Habel, F.S., 1993. Analytical solution of the one-dimensional time dependent transport equation. Water Resour. Res., 29, 3209–3214.10.1029/93WR01038
  4. Batu, V., 2006. Applied Flow and Solute Transport Modeling in Aquifers: Fundamental Principles and Analytical and Numerical Methods. CRC, Boca Raton, FL.10.1201/9781420037470
  5. Bear, J., 1972. Dynamics of Fluids in Porous Media. Elsevier, New York, USA.
  6. Carnahan, B., Luther, H.A., Wilkes, J.O., 1969. Applied Numerical Methods. Wiley, New York, pp. 429–530.
  7. Chaudhari, N.M., 1971. An improved numerical technique for solving multidimensional miscible displacement equation. Soc. Petrol. Engng J., 11, 277–284.10.2118/2982-PA
  8. Chen, J.S., Lai, K.H., Liu, C.W., Ni, C.F., 2012. A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions. J. Hydrol., 420–421, 191–204.10.1016/j.jhydrol.2011.12.001
  9. Crank, J., 1975. The Mathematics of Diffusion. 2nd ed. Oxford Univ. Press, London.
  10. De Smedt, F., Wierenga, P.J., 1977. Simulation of water and solute transport in unsaturated soils. In: Proc. 3rd Int. Symp. on Hydrology, Fort Collins. CO.
  11. Dudley, L.M., McLean, J.E., Furat. T.H., Jurinak, J.J., 1991. Sorption of cadmium copper from an acid mine waste extract by two calcareous soils: column studies. Soil Sci., 151, 121–135.10.1097/00010694-199102000-00002
  12. Ebach, E.H., White, R., 1958. Mixing of fluids flowing through beds of packed solids. J. American Institute of Chemical Eng., 4, 161–164.10.1002/aic.690040209
  13. Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.
  14. Fried, J.J., Combarnous, M.A., 1971. Dispersion in porous media. Adv. Hydrosci., 7, 169–281.10.1016/B978-0-12-021807-3.50008-4
  15. Gelhar, L.W., Welty, W., Rehfeldt, K.R., 1992. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res., 28, 1955–1974.10.1029/92WR00607
  16. Ghosh, N.C., Sharma, K.D., 2006. Groundwater Modelling and Management. Capital Publishing Company, New-Delhi.
  17. Gillham, R.W., Cherry, J.A., 1982. Contaminant migration in saturated unconsolidated geologic deposits. Geological Society of America, Special Paper, 189, 31–62.10.1130/SPE189-p31
  18. Guerrero, J.S.P., Skaggs, T.H., 2010. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients. J. Hydrol., 390, 57–65.10.1016/j.jhydrol.2010.06.030
  19. Guerrero, J.S.P., Pontedeiro, E.M., van Genuchten, M.T., Skaggs, T.H., 2013. Analytical solutions of the one-dimensional advection–dispersion solute transport equation subject to time-dependent boundary conditions. Chemical Eng. J., 221, 487–491.10.1016/j.cej.2013.01.095
  20. Huang, K., van Genuchten, M.T., Zhang, R., 1996. Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion. Appl. Math. Modelling, 20, 298–308.10.1016/0307-904X(95)00123-2
  21. Huang, G., Huang, Q., Zhan, H., 2006. Evidence of one-dimensional scale-dependent fractional advection dispersion. J. Contam. Hydrol., 85, 53–71.10.1016/j.jconhyd.2005.12.007
  22. Jain, S.K., Agarwal, P.K., Singh, V.P., 2007. Hydrology and Water Resources of India. Springer, The Netherlands, p. 87.
  23. Lantz, R.B., 1971. Quantitative evaluation of numerical diffusion truncation error. Society Petrole. Engg. J., 11, 315–320.10.2118/2811-PA
  24. Mickley, H.S., Sherwood, T.K., Reed, C.E., 1957. Applied Mathematics in Chemical Engineering. McGraw-Hill, New York.
  25. Mitchell, J.K., 1976. Fundamentals of Soil Behavior. Wiley, New York.
  26. Moldrup, P., Paulsen, T.G., Rolston, D.E., Yamaguchi, T., Hansen, J.A., 1994. Integrated flux model for unsteady transport of trace organic chemicals in soils. Soil Sci., 157, 137–152.10.1097/00010694-199403000-00002
  27. Notodarmojo, S., Ho, G.E., Scott, W.D., Davis, G.B., 1991. Modelling phosphorus transport in soils and groundwater with two-consecutive reactions. Water Res., 25, 10, 1205–1216.10.1016/0043-1354(91)90059-Y
  28. Ogata, A., Banks, R.B., 1961. A solution of differential equation of longitudinal dispersion in porous media. Geological Survey Professional Paper, 411-A.10.3133/pp411A
  29. Roberts, D.L., Selim, M.S., 1984. Comparative study of six explicit and two implicit finite difference schemes for solving one-dimensional parabolic partial differential equations. Int. J. Numer. Methods Eng., 20, 817–844.10.1002/nme.1620200504
  30. Scheidegger, A.E., 1957. The Physics of Flow through Porous Media. University of Toronto Press, Toronto.10.3138/9781487583750
  31. Scheidegger, A.E., 1961. General theory of dispersion in porous media. J. Geophys. Res., 66, 10, 3273–3278.10.1029/JZ066i010p03273
  32. Sharma, H.D., Reddy, K.R., 2004. Geo-Environmental Engineering. Wiley, New York.
  33. Singh, P., Singh, V.P., 2001. Snow and Glacier Hydrology. Kluwer Academic Publishers, Amsterdam, The Netherlands, p. 78.
  34. Singh, M.K., Singh, V.P., Singh, P., Shukla, D., 2009. Analytical solution for conservative solute transport in one-dimensional homogeneous porous formation with time-dependent velocity. J. Engg. Mech., 135, 9, 1015–1021.10.1061/(ASCE)EM.1943-7889.0000018
  35. Singh, M.K., Ahamad, S., Singh, V.P., 2012. Analytical solution for one-dimensional solute dispersion with time-dependent source concentration along uniform groundwater flow in a homogeneous porous formation. J. Eng. Mech., 138, 8, 1045–1056, DOI: 10.1061/(ASCE)EM.1943-7889.0000384.10.1061/(ASCE)EM.1943-7889.0000384
  36. Smith, G.D., 1978. Numerical Solution of Partial Differential Equations: Finite Difference Methods. 2nd ed. Oxford University Press, Oxford.
  37. Towler, B.F., Yang, R.Y.K., 1979. On comparing the accuracy of some finite-difference methods for parabolic partial differential equations. Int. J. Numer. Methods Eng., 14, 1021–1035.10.1002/nme.1620140706
  38. van Genuchten, M.T., Gray, W.G., 1978. Analysis of some dispersion corrected numerical schemes for solution of the transport equation. Int. J. Num. Methods Eng., 12, 387–404.10.1002/nme.1620120302
  39. van Genuchten, M.T., Leij, F.J., Skaggs, T.H., Toride, N., Bradford, S.A., Pontedeiro, E.M., 2013. Exact analytical solutions for contaminant transport in rivers. 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech., 61, 2, 146–160.10.2478/johh-2013-0020
  40. You, K., Zhan, H., 2013. New solutions for solute transport in a finite column with distance-dependent dispersivities and time-dependent solute sources. J. Hydrol., 487, 87–97.10.1016/j.jhydrol.2013.02.027
  41. Zamani, K., Bombardelli, F.A., 2014. Analytical solutions of nonlinear and variable-parameter transport equations for verification of numerical solvers. Environ. Fluid Mech., 14, 711–742. DOI: 10.1007/s10652-013-9325-0.10.1007/s10652-013-9325-0
DOI: https://doi.org/10.1515/johh-2017-0013 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 192 - 204
Submitted on: Apr 7, 2016
Accepted on: Sep 8, 2016
Published on: Mar 20, 2017
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Pintu Das, Sultana Begam, Mritunjay Kumar Singh, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.