Have a personal or library account? Click to login
Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes Cover

Flow behaviour and local concentration of coarse particles-water mixture in inclined pipes

Open Access
|Mar 2017

References

  1. Campbell, C.S., Francisco, A.S., Liu, Z., 2004. Preliminary observations of a particle lift force in horizontal slurry flow. Int. J. Multiphase Flow, 30, 199–216.10.1016/j.ijmultiphaseflow.2003.10.008
  2. Doron, P., Barnea, D., 1993. A three layer model for solid-liquid flow in horizontal pipes. Int. J. Multiphase Flow, 19, 6, 1029–1043.10.1016/0301-9322(93)90076-7
  3. Doron, P., Barnea, D., 1996. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiphase Flow, 22, 2, 273–283.10.1016/0301-9322(95)00071-2
  4. Durand, R., 1953. Concentration measuring instrument for hydraulic transportation installation. La Houille Blanche, 8, 2, 296–297.
  5. Gilies, R.G., Shook, C.A., Wilson, K.C, 1991. An improved two layer model for horizontal slurry flow. Can. J. Chemical Engineering, 69, 173–178.10.1002/cjce.5450690120
  6. Kao, D.T.Y., Hwang, L.Y., 1979. Critical slope for slurry pipeline transporting coal and other solid particles. In: Burns, A.P. (Ed.): Proc. 6th Int. Conf. on the Hydraulic Transport of Solids in Pipes - HYDROTRANSPORT, Canterbury (U.K.), BHRA Fluid Engineering Centre, Cranfield (U.K.), Vol. 1, Pap. A5, pp. 57–74.
  7. Kaushal, D.R., Tomita, Y., 2013. Prediction of concentration distribution in pipeline flow of highly concentrated slurry. Particulate Science and Technology, 31, 28–34.10.1080/02726351.2011.639045
  8. Kaushal, D.R., Sato, K., Toyota, T., Funatsu, K., Tomita, Y., 2005. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiphase Flow, 31, 809–823.10.1016/j.ijmultiphaseflow.2005.03.003
  9. Krupicka, J., Matousek, V., 2012. Gamma-ray-based method for density sensing in pipes - evaluation of measurement and data processing. In: Proc. 2nd IAHR Europe Congr., Munich (Germany), 27–30 June 2012.
  10. Krupicka, J., Matousek, V., 2014. Gamma-ray-based measurement of concentration distribution in pipe flow of settling slurry: vertical profiles and tomographic maps. J. Hydrol. Hydromech., 62, 2, 126–132.10.2478/johh-2014-0012
  11. Lukerchenko, N., Chara, Z., Vlasak, P., 2006. 2D numerical model of particle-bed collision in fluid-particle flows over bed. J. Hydraulic Research, 44, 1, 70–78.10.1080/00221686.2006.9521662
  12. Lukerchenko, N., Piatsevich, S., Chara, Z., Vlasak, P., 2009. 3D numerical model of a spherical particle saltation in channel with rough fixed bed. J. Hydrol. Hydromech., 57, 2, 100–112.10.2478/v10098-009-0009-x
  13. Maciejewski, W., Oxenford, J., Shook, C. A., 1993. Transport of coarse rock with sand and clay slurries. In: Proc. 12th Int. Conf. on Slurry Handling and Pipeline Transport - HYDROTRANSPORT 12. BHR Group, Brugge (Belgium), pp. 705–724.
  14. Matousek, V., 2009. Concentration profiles and solids transport above stationary deposit in enclosed conduit. J. Hydraulic Engineering ASCE, 135, 12, 1101–1106.10.1061/(ASCE)HY.1943-7900.0000113
  15. Matousek, V., Vlasak, P., Chara, Z., Konfrst, J., 2015. Experimental study of hydraulic transport of coarse-basalt. Maritime Engineering, 168, 93–100.10.1680/maen.14.00023
  16. Newitt, D.M., Richardson, J.F., Abbott, M., Turtle, R.B., 1955. Hydraulic conveying of solids in horizontal pipes. Transactions Institute Chemical Engineers, 33, 2, 93–113.
  17. Petryka, L., Zych, M., Murzyn, R., 2005. The non-stationary two-phase flow evaluation by radioisotopes. Nukleonika, 50, 43–46.
  18. Pullum, L., Graham, L.J. W., Slatter, P., 2004. A non-Newtonian two-layer model and its application to high density hydrotransport. In: N. Heywood (Ed.): Proc. 16th Int. Conf. on Hydrotransport, 26–28 April 2004, Vol. II. BHR Group, Santiago de Chile, pp. 579–594.
  19. Przewlocki, K., Michalik, A., Wolski, K., Korbel, K., 1979. A radiometric device for the determination of solids concentration distribution in a pipeline. In: Burns, A.P. (Ed.): Proc. 6th Int. Conf. on the Hydraulic Transport of Solids in Pipes - HYDROTRANSPORT 6, Canterbury (UK), BHRA Fluid Engineering Centre, Cranfield (U.K.), Pap. B3, pp. 219–227.
  20. Shook, C.A., Roco, M.C., 1991. Slurry Flow: Principles and Practice. 1st Ed. Butterworth/Heinemann, Boston 1991.10.1016/B978-0-7506-9110-9.50006-2
  21. Shook, C.A., Geller, L., Gillies, R.G., Husband, W.H.W., Small, M., 1986. Experiments with coarse particles in a 250 mm pipeline. In: Burns, A.P. (Ed.): Proc. 10th Int. Conf. on the Hydraulic Transport of Solids in Pipes - HYDROTRANSPORT 10, Innsbruck (Austria). BHRA Fluid Engineering Centre, Cranfield (U.K.), pp. 219–227.
  22. Sobota, J., Vlasak, P., Strozik, G., Plewa, F., 2009. Vertical distribution of concentration in horizontal pipeline – density and particle size influence. In: Proc. 8th ISOPE Ocean Mining (& Gas Hydrates) Symposium, Chennai (India), 20–24 September 2009, pp. 220–224.
  23. Sumner, R.J., McKibben, M., Shook, C.A., 1990. Concentration and velocity distribution in turbulent vertical slurry flow. J. Solid Liquid Flow, 2, 2, 33–42.
  24. Thomas, A.D., Wilson, K.C., 1987. New analysis of non-Newtonian turbulent flow - Yield-power-law fluids. Can. J. Chemical Engineering, 65, 335–338.10.1002/cjce.5450650221
  25. Vlasak, P., Chara, Z., 2007. Effect of particle size and concentration on flow behavior of complex slurries. In: Proc. 7th ISOPE Ocean Mining Symp., Lisbon, pp. 188–196.
  26. Vlasak, P., Chara, Z., 2011. Effect of particle size distribution and concentration on flow behaveior of dense slurries. Particulate Science and Technology, 29, 1, 53–65.10.1080/02726351.2010.508509
  27. Vlasak, P., Chara, Z., Kysela B., Sobota, J., 2011. Flow behavior of coarse-grained slurries in pipes. In: Proc. 9th (2011) ISOPE (Deep) Ocean Mining (& Gas Hydrates) Symposium, 19–25 June 2011, Maui (Hawaii, USA), pp. 158–164.
  28. Vlasak, P., Kysela, B., Chara, Z., 2012. Flow Structure of coarse-grained slurry in horizontal pipe. J. Hydrol. Hydromech., 60, 2, 115–124.10.2478/v10098-012-0010-7
  29. Vlasak, P., Chara, Z., Konfrst, J., Kysela, B., 2013a. Experimental investigation of coarse-grained particles in pipes, In: Proc. 16th Int. Conf. on Transport & Sedimentation of Solid Particles, Rostock (Germany), 18–20 September 2013, pp. 265–273.
  30. Vlasak, P., Chara, Z., Konfrst, J., Sobota, J., Kysela, B., 2013b. Conveying of coarse-grained particles in pipes. In: Proc. 10th (2013) ISOPE Ocean Mining & Gas Hydrates Symposium, Szcezecin (Poland), 22–26 September 2013, pp. 215–220.
  31. Vlasak, P., Kysela, B., Chara, Z., 2014a. Fully stratified particle-laden flow in horizontal circular pipe, Particulate Science and Technology, 32, 2, 179–185.10.1080/02726351.2013.840705
  32. Vlasak, P., Chara, Z., Konfrst, J., Krupicka, J., 2014b. Experimental investigation of coarse particle conveying in pipes. EPJ Web of Conferences, Experimental Fluid Mechanics 2014, 18–21 November, Cesky Krumlov (Czech Rep.), pp. 712–719.
  33. Vlasak, P., Chara, Z., Krupicka, J., Konfrst, J., 2014c. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. J. Hydrol. Hydromech., 62, 3, 241–247.10.2478/johh-2014-0022
  34. Vlasak, P., Chara, Z., Konfrst, J., 2015. Conveying of coarse particles in horizontal and inclined pipes. In: 17th Int.Conf. on Transport & Sedimentation of Solid Particles, Delft (the Netherlands), September 22–25, 2015, pp. 355–362.
  35. Vlasak, P., Chara, Z., Konfrst, J., Krupicka, J., 2016. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe. Canadian Journal of Chemical Engineering, 94, 1040–1047.10.1002/cjce.22484
  36. Wilson, K.C., 1976. A unified physically based analysis of solid-liquid pipeline flow, In: Proc. 4th Int. Conf. on the Hydraulic Transport of Solids in Pipes - HYDROTRANSPORT 4, B.H.R.A., Banff (Canada), 18–21 May 1976, Pap. A1.
  37. Wilson, K.C., Addie, G.R., 1997. Coarse-particle pipeline transport: effect of particle degradation on friction. Powder Technology, 94, 235–238.10.1016/S0032-5910(97)03300-7
  38. Wilson, K.C., Brown, N.P., Streat, M., 1979. Hydraulic hoisting at high concentration: A new study of friction mechanisms. In: Proc. 6th Int. Conf. on Hydraulic Transport of Solids in Pipes (HYDROTRANSPORT 6). Cranfield, Bedford (UK), BHRA Fluid Engineering, pp. 269–282.
  39. Wilson, K.C., Addie, G.R., Sellgren, A., Clift, R., 2006. Slurry Transport Using Centrifugal Pumps. 3rd Ed. Springer, New York, Philadelphia.
  40. Wilson, K.C., Sanders, R.S., Gillies, R.G., Shook, C.A., 2010. Verification of the near-wall model for slurry flow. Powder Technology, 197, 247–253.10.1016/j.powtec.2009.09.023
  41. Zych, M., Petryka, L., Kępinski, J., Hanus, R., Bujak, T., Puskarczyk, E. 2014. Radioisotope investigations of compound two-phase flows in an open channel flow. Measurement and Instrumentation, 35, 11–15.
DOI: https://doi.org/10.1515/johh-2017-0001 | Journal eISSN: 1338-4333 | Journal ISSN: 0042-790X
Language: English
Page range: 183 - 191
Submitted on: Aug 9, 2016
Accepted on: Sep 26, 2016
Published on: Mar 20, 2017
Published by: Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Pavel Vlasak, Zdenek Chara, Jiri Konfrst, published by Slovak Academy of Sciences, Institute of Hydrology; Institute of Hydrodynamics, Czech Academy of Sciences, Prague
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.