Have a personal or library account? Click to login
Homeostatic Agent for General Environment Cover
By: Naoto Yoshida  
Open Access
|Mar 2018

References

  1. Ashby, W. R. 1960. Design for a Brain. Springer Science & Business Media.10.1007/978-94-015-1320-3
  2. Barto, A. G.; Singh, S.; and Chentanez, N. 2004. Intrinsically motivated learning of hierarchical collections of skills. In Proc. 3rd Int. Conf. Development Learn, 112-119.
  3. Cañamero, D. 1997. Modeling motivations and emotions as a basis for intelligent behavior. In Proceedings of the first international conference on Autonomous agents, 148-155. ACM.10.1145/267658.267688
  4. Dawkins, R. 1976. The Selfish Gene. Oxford University Press, Oxford, UK.
  5. Dayan, P., and Hinton, G. E. 1996. Varieties of Helmholtz machine. Neural Networks 9(8):1385-1403.10.1016/S0893-6080(96)00009-3
  6. Doya, K., and Uchibe, E. 2005. The cyber rodent project: Exploration of adaptive mechanisms for self-preservation and self-reproduction. Adaptive Behavior 13(2):149-160.10.1177/105971230501300206
  7. Elfwing, S.; Uchibe, E.; Doya, K.; and Christensen, H. I. 2005. Biologically inspired embodied evolution of survival. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, 2210-2216. IEEE.
  8. Hester, T., and Stone, P. 2012. Learning and using models. In Reinforcement Learning. Springer. 111-141.10.1007/978-3-642-27645-3_4
  9. Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; and Saul, L. K. 1999. An introduction to variational methods for graphical models. Machine learning 37(2):183-233.10.1023/A:1007665907178
  10. Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996. Reinforcement learning: A survey. arXiv preprint cs/9605103.10.1613/jair.301
  11. Kappen, H. J.; G´omez, V.; and Opper, M. 2012. Optimal control as a graphical model inference problem. Machine learning 87(2):159-182.10.1007/s10994-012-5278-7
  12. Keramati, M., and Gutkin, B. S. 2011. A reinforcement learning theory for homeostatic regulation. In Advances in Neural Information Processing Systems, 82-90.
  13. Kingma, D., and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  14. Kingma, D. P., and Welling, M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
  15. Konidaris, G., and Barto, A. 2006. An adaptive robot motivational system. In From Animals to Animats 9. Springer. 346-356.10.1007/11840541_29
  16. Lange, S.; Riedmiller, M.; and Voigtlander, A. 2012. Autonomous reinforcement learning on raw visual input data in a real world application. In Neural Networks (IJCNN), The 2012 International Joint Conference on, 1-8. IEEE.10.1109/IJCNN.2012.6252823
  17. Lin, L.-J. 1992. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine learning 8(3-4):293-321.10.1007/BF00992699
  18. McFarland, D., and B¨osser, T. 1993. Intelligent behavior in animals and robots. MIT Press.
  19. McFarland, D., and Houston, A. 1981. Quantitative ethology. Pitman Advanced Pub. Program.
  20. McFarland, D., and Spier, E. 1997. Basic cycles, utility and opportunism in self-sufficient robots. Robotics and Autonomous Systems 20(2):179-190.10.1016/S0921-8890(96)00069-3
  21. Meyer, J.-A., and Guillot, A. 1991. Simulation of adaptive behavior in animats: Review and prospect. In In J.-A. Meyer and S.W. Wilson (Eds.) From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, 2-14.
  22. Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. arXiv preprint arXiv:1402.0030.
  23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-level control through deep reinforcement learning. Nature 518(7540):529-533.10.1038/nature1423625719670
  24. Nakamura, M., and Yamakawa, H. 2016. A Game-Engine-Based Learning Environment Framework for Artificial General Intelligence. In International Conference on Neural Information Processing, 351-356. Springer.10.1007/978-3-319-46687-3_39
  25. Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance under reward transformations: Theory and application to reward shaping. In ICML, volume 99, 278-287.
  26. Ogata, T., and Sugano, S. 1997. Emergence of Robot Behavior Based on Self-Preservation. Research Methodology and Embodiment of Mechanical System. Journal of the Robotics Society of Japan 15(5):710-721.10.7210/jrsj.15.710
  27. Omohundro, Stephen M, S. M. 2008. The Basic AI Drives. In Artificial General Intelligence, 2008: Proceedings of the First AGI Conference, volume 171, 483. IOS Press.
  28. Pfeifer, R., and Scheier, C. 1999. Understanding intelligence. MIT press.
  29. Ranganath, R.; Gerrish, S.; and Blei, D. M. 2013. Black box variational inference. arXiv preprint arXiv:1401.0118.
  30. Rawlik, K.; Toussaint, M.; and Vijayakumar, S. 2013. On stochastic optimal control and reinforcement learning by approximate inference. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 3052-3056. AAAI Press.10.15607/RSS.2012.VIII.045
  31. Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning using connectionist systems. University of Cambridge, Department of Engineering.
  32. Rusu, A. A.; Vecerik, M.; Roth¨orl, T.; Heess, N.; Pascanu, R.; and Hadsell, R. 2016. Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286.
  33. Sibly, R., and McFarland, D. 1976. On the fitness of behavior sequences. American Naturalist 601-617.10.1086/283093
  34. Spier, E. 1997. From reactive behaviour to adaptive behaviour: motivational models for behaviour in animals and robots. Ph.D. Dissertation, University of Oxford.
  35. Toda, M. 1962. The design of a fungus-eater: A model of human behavior in an unsophisticated environment. Behavioral Science 7(2):164-183.10.1002/bs.3830070203
  36. Toda, M. 1982. Man, robot, and society: Models and speculations. M. Nijhoff Pub.10.1007/978-94-017-5358-6
  37. Todorov, E. 2008. General duality between optimal control and estimation. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, 4286-4292. IEEE.10.1109/CDC.2008.4739438
  38. Toussaint, M.; Harmeling, S.; and Storkey, A. 2006. Probabilistic inference for solving (PO) MDPs. Informatics research report 0934, University of Edinburgh.
  39. Toussaint, M. 2009. Robot trajectory optimization using approximate inference. In Proceedings of the 26th Annual International Conference on Machine Learning, 1049-1056. ACM.10.1145/1553374.1553508
  40. Vlassis, N., and Toussaint, M. 2009. Model-free reinforcement learning as mixture learning. In Proceedings of the 26th Annual International Conference on Machine Learning, 1081-1088. ACM.10.1145/1553374.1553512
  41. Walter, W. 1953. The living brain. Norton.
  42. Young, J. Z. 1966. The Memory System of the Brain. Oxford University Press.10.1525/9780520346468
Language: English
Page range: 1 - 22
Submitted on: Mar 27, 2017
Accepted on: May 11, 2017
Published on: Mar 7, 2018
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Naoto Yoshida, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Volume 8 (2017): Issue 1 (December 2017)