Have a personal or library account? Click to login
Comparison of Supervised-learning Models for Infant Cry Classification / Vergleich von Klassifikationsmodellen zur Säuglingsschreianalyse Cover

Comparison of Supervised-learning Models for Infant Cry Classification / Vergleich von Klassifikationsmodellen zur Säuglingsschreianalyse

Open Access
|May 2015

References

  1. Abdulaziz, Y., & Ahmad, S. (2010). An accurate infant cry classification system based on continuous Hidden Markov Model. In Information Technology (ITSim), 2010 International Symposium in (Vol. 3, pp. 1648-1652).
  2. ACM. (2014). ACM Digital Library. Retrieved from http://dl.acm.org/dl.cfm Amaro-Camargo, E., & Reyes-Garcia, C. A. (2007). Applying statistical vectors of acoustic characteristics for the automatic classification of infant cry. Advances in Pattern Recognition, 4681, 1078-1085.
  3. Arch-Tirado, E., Mandujano, M., Garcia-Torices, L., Martinez-Cruz, C. F., Reyes- García, C. A., & Taboada-Picazo, V. (2004). Cry analysis of hypoacoustic children and normal hearing children. Cirugia y Cirujanos, 72(4), 271-276.
  4. Aucouturier, J.-J., Nonaka, Y., Katahira, K., & Okanoya, K. (2011). Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models. Journal of the Acoustical Society of America, 130(5), 2969-2977.10.1121/1.364137722087925
  5. Barajas, S. E., & Reyes, C. A. (2005). Your fuzzy relational neural network parameters optimization with a genetic algorithm. FUZZ-IEEE 2005: Proceedings of the IEEE International Conference on Fuzzy Systems: BIGGEST LITTLE CONFERENCE IN THE WORLD, 684-689.10.1109/FUZZY.2005.1452477
  6. Barajas-Montiel, S., & Reyes-Garcia, C. (2005). Identifying Pain and Hunger in Infant Cry with Classifiers Ensembles. In Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on (Vol. 2, pp. 770-775).10.1109/CIMCA.2005.1631561
  7. 2012. Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on.
  8. Blinick, G., Tavolga, W. N., & Antopol, W. (1971). Variations in birth cries of newborn infants from narcotic-addicted and normal mothers. American Journal of Obstetrics and Gynecology, 110(7), 948-958. Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the Institute of Phonetic Sciences, Amsterdam (Vol. 17, pp. 97-110).
  9. Boersma, P. (2009). Should Jitter Be Measured by Peak Picking or by Waveform Matching? Folia Phoniatrica et Logopaedica, 61(5), 305-308.10.1159/00024515919828997
  10. Boersma, P. & Weenink, D. (2013). Praat: doing phonetics by computer. Version 5.3.39.
  11. Boersma, P. & Weenink, D. (2013). Praat: doing phonetics by computer: Manual. Retrieved from http://www.fon.hum.uva.nl/praat/manual/Intro.html Brahnam, S., Chuang, C. F., Shih, F. Y., & Slack. (2006). Machine recognition and representation of neonatal facial displays of acute pain. Artificial Intelligence in Medicine, 36(3), 211-222.
  12. Branco, A., Fekete, S. M., Rugolo, L. M., & Rehder, M. I. (2007). The newborn pain cry: descriptive acoustic spectrographic analysis. International Journal of Pediatric Otorhinolaryngology, 71(4), 539-546.10.1016/j.ijporl.2006.11.00917287031
  13. Cano, S., Suaste, I., Escobedo, D., Reyes-Garcia, C. A., & Ekkel, T. (2006). A combined classifier of cry units with new acoustic attributes. Advances in Pattern Recognition, 4225, 416-425.10.1007/11892755_43
  14. Cano-Ortiz, S. D., Reyes-Garcia, C. A., Reyes-Galaviz, O. F., Escobedo- Beceiro, D. I., & Cano-Otero, J. D. (2013). Emergence of a New Alternative on Cry Analysis: The Fuzzy Approach. 5TH LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2011): SUSTAINABLE TECHNOLOGIES FOR THE HEALTH OF ALL, PTS 1 AND 2, 33(1-2), 846-849.10.1007/978-3-642-21198-0_215
  15. Chollet, G., Esposito, A., Faundez-Zanuy, M., & Marinaro, M. (Eds.). (2005). Berlin and Heidelberg: Springer-Verlag.
  16. Cohen, R., & Lavner, Y. (2012). Infant cry analysis and detection. In Electrical Electronics Engineers in Israel (IEEEI), 2012 IEEE 27th Convention of (pp. 1-5).10.1109/EEEI.2012.6376996
  17. Corwin, M. J., Lester, B. M., Sepkoski, C., McLaughlin, S., Kayne, H., & Golub, H. L. (1992). Effects of in utero cocaine exposure on newborn acoustical cry characteristics. Pediatrics, 89(6 Pt 2), 1199-1203.10.1542/peds.89.6.1199
  18. DBLP. (2014). Digital Bibliography & Library Project. Retrieved from http://www.dblp.org/ Deutsche Zentralbibliothek für Medizin. (2014). MEDPILOT. Retrieved from http://www.medpilot.de/ DIMDI. (2014). DIMDI Medizinwissen. Retrieved from http://www.dimdi.de/static/de/index.html Esposito, G., Nakazawa, J., Venuti, P., & Bornstein, M. H. (2013). Componential deconstruction of infant distress vocalizations via tree-based models: A study of cry in autism spectrum disorder and typical development. Research in Developmental Disabilities, 34(9), 2717-2724.
  19. Etz, T., Reetz, H., & Wegener, C. (2012). A classification model for infant cries with hearing impairment and unilateral cleft lip and palate. Folia Phoniatrica et Logopaedica, 64(5), 254-261.10.1159/00034399423182951
  20. Fisichelli, V. R., & Karelitz, S. (1966). Frequency spectra of the cries of normal infants and those with Down’s syndrome. Psychonomic Science, 6, 195-196.10.3758/BF03328024
  21. Fort, A., & Manfredi, C. (1998). Acoustic analysis of newborn infant cry signals. Medical Engineering & Physics, 20(6), 432-442.10.1016/S1350-4533(98)00045-9
  22. Fuller, B. F. (1991). Acoustic discrimination of three types of infant cries. Nursing Research, 40(3), 156-160.10.1097/00006199-199105000-00007
  23. Galaviz, Orion Fausto Reyes, & García, Carlos Alberto Reyes (2005). Infant cry classification to identify hypo acoustics and asphyxia comparing an evolutionary-neural system with a neural network system. In: MICAI’05, Proceedings of the 4th Mexican international conference on Advances in Artificial Intelligence (pp. 949-958). Springer-Verlag.
  24. Garcia, J., & Reyes Garcia, C. (2003). Mel-frequency cepstrum coefficients extraction from infant cry for classification of normal and pathological cry with feed-forward neural networks. In Neural Networks, 2003. Proceedings of the International Joint Conference on (Vol. 4, pp. 3140-3145 vol. 4).10.1109/IJCNN.2003.1224074
  25. Garcia, J. O., & Reyes Garcia, Carlos A. (2003). Medical Applications - Acoustic Features Analysis for Recognition of Normal and Hipoacustic Infant Cry Based on Neural Networks. Lecture Notes in Computer Science, 2687, 615-622.10.1007/3-540-44869-1_78
  26. GBV. (2014). Online Contents - SSG Mathematik und Informatik. Retrieved from http://gso.gbv.de/DB=2.77/LNG=DU/ Goberman, A. M., & Robb, M. P. (2005). Acoustic characteristics of crying in infantile laryngomalacia. Logopedics, Phoniatrics, Vocology, 30(2), 79-84.10.1080/1401543051000670316147227
  27. Golub, H. L., & Corwin, M. J. (1982). Infant cry: a clue to diagnosis. Pediatrics, 69(2), 197-201.10.1542/peds.69.2.197
  28. Hariharan, M., Saraswathy, J., Sindhu, R., Khairunizam, W., & Yaacob, S. (2012). Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks. Expert Systems with Applications, 39(10), 9515-9523.10.1016/j.eswa.2012.02.102
  29. Hariharan, M., Saraswathy, J., Sindhu, R., Khairunizam, W., & Yaacob, S. (2012). Infant cry classification to identify asphyxia using time-frequency analysis and radial basis neural networks. Expert Systems with Applications, 39(10), 9515-9523.10.1016/j.eswa.2012.02.102
  30. Hariharan, M., Sindhu, R., & Yaacob, S. (2012). Normal and hypoacoustic infant cry signal classification using time-frequency analysis and general regression neural network. Computer Methods and Programs in Biomedicine, 108(2), 559-569.10.1016/j.cmpb.2011.07.01021824676
  31. Hariharan, M., Yaacob, S., & Awang, S. A. (2011). Pathological infant cry analysis using wavelet packet transform and probabilistic neural network. Expert Systems with Applications, 38(12), 15377-15382.10.1016/j.eswa.2011.06.025
  32. Honda, K., Kitahara, K., Matsunaga, S., Yamashita, M., & Shinohara, K. (2012). Emotion classification of infant cries with consideration for local and global features. In Signal Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific (pp. 1-4).
  33. IBM. (2013). SPSS Modeler. Version 15.
  34. IBM. (2013). SPSS Statistics.
  35. IEEE. (2014). IEEE Xplore Digital Library. Retrieved from http://ieeexplore.ieee.org/ Karelitz, S., & Fisichelli, V. R. (1962). The cry thresholds of normal infants and those with brain damage. Disability and Rehabilitation, 61(5), 679-684.10.1016/S0022-3476(62)80338-2
  36. Kheddache, Y., & Tadj, C. (2012). Newborn’s pathological cry identification system. In Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on (pp. 1024-1029).10.1109/ISSPA.2012.6310439
  37. Kia, M., Kia, S., Davoudi, N., & Biniazan, R. (2012). A detection system of infant cry using fuzzy classification including dialing alarm calls function. In Innovative Computing Technology (INTECH), 2012 Second International Conference on (pp. 224-229).10.1109/INTECH.2012.6457776
  38. Lederman, D., Cohen, A., Zmora, E., Wermke, K., Hauschildt, S., & Stellzig- Eisenhauer, A. (2002). On the use of hidden Markov models in infants’ cry classification. 22ND CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, PROCEEDINGS, 350-352.10.1109/EEEI.2002.1178499
  39. Lederman, D., Zmora, E., Hauschildt, S., Stellzig‐Eisenhauer, A., & Wermke, K. (2008). Classification of cries of infants with cleft-palate using parallel hidden Markov models. Medical & Biological Engineering & Computing, 46(10), 965-975.10.1007/s11517-008-0334-y18368431
  40. Lester, B. M., Tronick, E. Z., LaGasse, L. L., Seifer, R., Bauer, C. R., Shankaran, S., . . . Maza, P. L. (2002). The maternal lifestyle study: effects of substance exposure during pregnancy on neurodevelopmental outcome in 1-monthold infants. Pediatrics, 110(6), 1182-1192.10.1542/peds.110.6.118212456917
  41. Lind, J., Vuorenkoski, V., & Rosberg, G. (1970). Spectrographic analysis of vocal response to pain stimuli in infants with Down’s syndrome. Developmental Medicine and Child Neurology, 12(4), 478-486.10.1111/j.1469-8749.1970.tb01943.x4248083
  42. Lind, J., Wasz-Höckert, O., Rosberg, G., Theorell, K., Valanne, E. H., Partanen, T. J., & Vuorenkoski, V. (1967). Sound spectrography in pediatric diagnosis. Acta Paediatrica Scandinavica, 177(Suppl. s177), 113-119.10.1111/j.1651-2227.1967.tb05253.x4231499
  43. Lu Guanming, Li Xiaonan, & Li Haibo. (2008). Research on Recognition for Facial Expression of Pain in Neonates. Acta Optica Sinica, 28(11), 2109-2114.10.3788/AOS20082811.2109
  44. Michelsson, K., Eklund, K., Leppänen, P., & Lyytinen, H. (2002). Cry Characteristics of 172 Healthy 1- to 7-Day-Old Infants. Folia Phoniatrica et Logopaedica, 54(4), 190-200.10.1159/000063190
  45. Michelsson, K., Sirvio, P., & Wasz-Hockert, O. (1977). Sound spectrographic cry analysis of infants with bacterial meningitis. Developmental Medicine and Child Neurology, 19(3), 309-315.10.1111/j.1469-8749.1977.tb08366.x
  46. Mohd Ali, M., Mansor, W., Lee, Y. K., & Zabidi, A. (2012). Asphyxiated infant cry classification using Simulink model. In Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on (pp. 491-494).10.1109/CSPA.2012.6194778
  47. Möller, S., & Schönweiler, R. (1999). Analysis of infant cries for the early detection of hearing impairment. Speech Communication, 28(3), 175-193.10.1016/S0167-6393(99)00016-3
  48. Nugent, J. K., Lester, B. M., Greene, S. M., Wieczorek-Deering, D., & O’Mahony, P. (1996). The effects of maternal alcohol consumption and cigarette smoking during pregnancy on acoustic cry analysis. Child Development, 67(4), 1806-1815.10.2307/1131733
  49. Orozco, J., & Reyes-Garcia, C. A. (2003). Implementation and analysis of training algorithms for the classification of infant cry with feed-forward neural networks. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS: FROM CLASSICAL MEASUREMENT TO COMPUTING WITH PERCEPTIONS, 271-276.10.1109/ISP.2003.1275851
  50. Orozco-Garcia, J., Reyes-Garcia, C. A., & Reyes-Garcia, C. (2003). A Study on the Recognition of Patterns of Infant Cry for the Identification of Deafness in Just Born Babies with Neural Networks. Lecture Notes in Computer Science, 2905, 342-349.10.1007/978-3-540-24586-5_42
  51. Ortiz, S. D., Beceiro, D. I., & Ekkel, T. (2004). A radial basis function network oriented for infant cry classification. Advances in Pattern Recognition, 3287, 374-380.10.1007/978-3-540-30463-0_46
  52. Ortiz, Sergio D. Cano, Escobedo Beceiro, Daniel L., Ekkel, T., & Ortiz, S. D. (2004). A Radial Basis Function Network Oriented for Infant Cry Classification. Lecture Notes in Computer Science, 3287, 374-380.10.1007/978-3-540-30463-0_46
  53. Own, H. S., & Abraham, A. (2012). A new weighted rough set framework based classification for Egyptian NeoNatal Jaundice. Appl. Soft Comput., 12(3), 999-1005.10.1016/j.asoc.2011.11.025
  54. Petroni, M., Malowany, M., Johnston, C. C., & Stevens, B. J. (1995). A comparison of neural network architectures for the classification of three types of infant cry vocalizations. In Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference (Vol. 1, pp. 821-822 vol. 1).10.1109/IEMBS.1995.575380
  55. Petroni, M., Malowany, M., Johnston, C. C., & Stevens, B. J. (1995). On the use of artificial neural networks (ANNs) for the classification of three types of infant cries. In Communications, Computers, and Signal Processing, 1995. Proceedings., IEEE Pacific Rim Conference on (pp. 501-504).10.1109/PACRIM.1995.519579
  56. Poel, M., & Ekkel, T. (2006). Analyzing infant cries using a committee of neural networks in order to detect hypoxia related disorder. International Journal on Artificial Intelligence Tools, 15(3), 397-410.10.1142/S0218213006002734
  57. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (2002). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.
  58. Rapid-I. (2014). RapidMiner Studio 6. Retrieved from http://rapidminer.com/products-2/rapidminer-studio/ Rautava, L., Lempinen, A., Ojala, S., Parkkola, R., Rikalainen, H., Lapinleimu, H., . . . Lehtonen, L. (2007). Acoustic quality of cry in very-low-birth-weight infants at the age of 1 1/2 years. Early Human Development, 83(1), 5-12.10.1016/j.earlhumdev.2006.03.004
  59. Reyes Galaviz, Orion Fausto, & Reyes Garcia, Carlos Alberto. (2004). Intelligent Interfaces and Speech Processing - Infant Cry Classification to Identify Hypoacoustics and Asphyxia with Neural Networks. Lecture Notes in Computer Science, 2972, 69-78.10.1007/978-3-540-24694-7_8
  60. Reyes Galaviz, Orion Fausto, & Reyes Garcia, Carlos Alberto. (2005). Bioinformatics and Medical Applications - Infant Cry Classification to Identify Hypo Acoustics and Asphyxia Comparing an Evolutionary-Neural System with a Neural Network System. Lecture Notes in Computer Science, 3789, 949-958.10.1007/11579427_97
  61. Reyes-Galaviz, O. F., Arch Tirado, E., Reyes-Garcia, C. A., Reyes-Galaviz, O., & Reyes-Garcia, C. (2004). Elderly and Disabled People: Therapy and Care - Classification of Infant Crying to Identify Pathologies in Recently Born Babies with ANFIS. Lecture Notes in Computer Science, 3118, 408-415.10.1007/978-3-540-27817-7_60
  62. Reyes-Galaviz, O., Cano-Ortiz, S., & Reyes-Garcia, C. (2008). Validation of the Cry Unit as Primary Element for Cry Analysis Using an Evolutionary-Neural Approach. In Computer Science, 2008. ENC ’08. Mexican International Conference on (pp. 261-267).10.1109/ENC.2008.16
  63. Reyes-Galaviz, O. F., Verduzco, A., Arch-Tirado, E., & Reyes-García, C. A. (2005). Analysis of an infant cry recognizer for the early identification of pathologies: Nonlinear Speech Modeling and Applications. In G. Chollet, A. Esposito, M. Faundez-Zanuy, & M. Marinaro (Eds.) (pp. 404-409). Berlin and Heidelberg: Springer-Verlag.
  64. Reyes-Garcia, C. A., Reyes-Galaviz, O. F., Cano-Ortiz, S. D., Escobedo- Becerro, D. I., Zatarain, R., & Barron-Estrada, L. (2010). Soft Computing Approaches to the Problem of Infant Cry Classification with Diagnostic Purposes. Soft Computing for Recognition Based on Biometrics, 312, 3-18.10.1007/978-3-642-15111-8_1
  65. Robb, M. P., Crowell, D. H., & Dunn-Rankin, P. (2007). Cry analysis in infants resuscitated for apnea of infancy. International Journal of Pediatric Otorhinolaryngology, 71(7), 1117-1123.10.1016/j.ijporl.2007.04.003417051917493692
  66. Rosales-Pérez, A., Reyes-García, C. A., & Gómez-Gil, P. (2011). Genetic fuzzy relational neural network for infant cry classification. In : MCPR’11, Proceedings of the Third Mexican Conference on Pattern Recognition (pp. 288-296). Springer-Verlag.
  67. Sahak, R., Lee, Y., Mansor, W., Yassin, A. I. M., & Zabidi, A. (2010). Optimized Support Vector Machine for classifying infant cries with asphyxia using Orthogonal Least Square. In Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference on (pp. 692-696).10.1109/ICCAIE.2010.5735023
  68. Sahak, R., Lee, Y., Mansor, W., Zabidi, A., & Yassin, A. I. M. (2011). Detection of asphyxia from infant cry by linear kernel support vector machine enhanced with features from orthogonal least square. In Computer Applications and Industrial Electronics (ICCAIE), 2011 IEEE International Conference on (pp. 341-345).10.1109/ICCAIE.2011.6162157
  69. Sahak, R., Mansor, W., Lee, Y. K., Yassin, A. I. M., & Zabidi, A. (2010). Performance of Combined Support Vector Machine and Principal Component Analysis in recognizing infant cry with asphyxia. In 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6292-6295). IEEE.10.1109/IEMBS.2010.5628084
  70. Sahak, R., Mansor, W., Khuan, L., Zabidi, A., & Yassin, A. I. M. (2012). Detection of asphyxia from infant cry using support vector machine and multilayer perceptron integrated with Orthogonal Least Square. In Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on (pp. 906-909).10.1109/BHI.2012.6211734
  71. Santiago-Sanchez, K., Reyes-Garcia, C. A., & Gomez-Gil, P. (2009). Type-2 Fuzzy Sets Applied to Pattern Matching for the Classification of Cries of Infants under Neurological Risk. Advances in Pattern Recognition, 5754, 201-210.10.1007/978-3-642-04070-2_23
  72. Saraswathy, J., Hariharan, M., Vijean, V., Yaacob, S., & Khairunizam, W. (2012). Performance comparison of Daubechies wavelet family in infant cry classification. In Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on (pp. 451-455).10.1109/CSPA.2012.6194767
  73. Schonweiler, R., Kaese, S., Moller, S., Rinscheid, A., & Ptok, M. (1996). Neuronal networks and self-organizing maps: New computer techniques in the acoustic evaluation of the infant cry. International Journal of Pediatric Otorhinolaryngology, 38(1), 1-11.10.1016/S0165-5876(96)01389-4
  74. Schönweiler, R., Kaese, S., Möller, S., Rinscheid, A., & Ptok, M. (1996). Neuronal networks and self-organizing maps: new computer techniques in the acoustic evaluation of the infant cry. International Journal of Pediatric Otorhinolaryngology, 38(1), 1-11.10.1016/S0165-5876(96)01389-4
  75. Sheinkopf, S. J., Iverson, J. M., Rinaldi, M. L., & Lester, B. M. (2012). Atypical cry acoustics in 6-month-old infants at risk for autism spectrum disorder. Autism Research, 5(5), 331-339.10.1002/aur.1244351727422890558
  76. Singh, A. K., Mukhopadhyay, J., & Rao, K. (2013). Classification of infant cries using epoch and spectral features. In Communications (NCC), 2013 National Conference on (pp. 1-5).10.1109/NCC.2013.6487999
  77. Sirviö, P., & Michelsson, K. (1976). Sound-spectrographic cry analysis of normal and abnormal newborn infants: A review and a recommendation for standardization of the cry characteristics. Folia Phoniatrica, 28(3), 161-173.10.1159/0002640441029711
  78. Suaste-Rivas, I., Diaz-Méndez, A., Reyes-Garcia, C. A., Reyes-Galaviz, O. F., Reyes-Garcia, C., & Reyes-Galaviz, O. (2006). IV Dialogue - Hybrid Neural Network Design and Implementation on FPGA for Infant Cry Recognition. Lecture Notes in Computer Science, 4188, 703-710.10.1007/11846406_88
  79. Suaste-Rivas, I., Reyes-Galaviz, O. F., Diaz-Mendez, A., & Reyes-Garcia, C. A. (2004). A fuzzy relational neural network for pattern classification. Advances in Pattern Recognition, 3287, 358-365.10.1007/978-3-540-30463-0_44
  80. Suaste-Rivas, I., Reyes-Galviz, O. F., Diaz-Mendez, A., & Reyes-Garcia, C. A. (2004). Implementation of a linguistic fuzzy relational neural network for detecting pathologies by infant cry recognition. Advances in Pattern Recognition, 3315, 953-962.10.1007/978-3-540-30498-2_95
  81. The R Foundation for Statistical Computing. (2014). The R Project for Statistical Computing. Retrieved from http://www.r-project.org/
  82. Thoden, C. J., & Michelsson, K. (1979). Sound spectrographic cry analysis in Krabbe’s Disease. Developmental Medicine and Child Neurology, 21(3), 400-401.10.1111/j.1469-8749.1979.tb01639.x467827
  83. Thomson Reuters. (2014). Web of Science. Retrieved from http://www.isiknowledge.com/WOS
  84. Várallyay, György Jr. (2007). The melody of crying. International Journal of Pediatric Otorhinolaryngology, 71(11), 1699-1708.10.1016/j.ijporl.2007.07.00517720255
  85. Verduzco-Mendoza, A., Arch-Tirado, E., Reyes-Garcia, C. A., Leybon-Ibarra, J., & Licona-Bonilla, J. (2012). Spectrographic cry analysis in newborns with profound hearing loss and perinatal high-risk newborns. Cirugia y Cirujanos, 80(1), 3-10.
  86. Vuorenkoski, V., Lind, J., & Partanen, T. J. (1966). Spectrographic analysis of cries from children with maladie du cri du chat. Annales Paediatriae Fenniae, 12(3), 174-180.
  87. Wasz-Höckert, O., Lind, J., Vuorenkoski, V., Partanen, T. J., & Valanne, E. H. (1968). The infant cry: A spectrographic and auditory analysis (1st ed.). Clinics in developmental medicine: Vol. 29: Cambridge University Press.
  88. Zabidi, A., Khuan, L. Y., Mansor, W., Yassin, I. M., & Sahak, R. (2010). Classification of Infant Cries with Asphyxia Using Multilayer Perceptron Neural Network. 2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL. 1, 204-208.10.1109/ICCEA.2010.47
  89. Zabidi, A., Khuan, L., Mansor, W., Yassin, I. M., & Sahak, R. (2011). Binary particle swarm optimization for feature selection in detection of infants with hypothyroidism. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 2772-2775).10.1109/IEMBS.2011.609075922254916
  90. Zabidi, A., Mansor, W., Lee Yoot Khuan, Yassin, I., & Sahak, R. (2010). Discrete Mutative Particle Swarm Optimisation of MFCC computation for classifying hypothyroidal infant cry. In Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference on (pp. 588-592).10.1109/ICCAIE.2010.5735149
  91. Zabidi, A., Mansor, W., Yoot Khuan Lee, Yassin, I., & Sahak, R. (2011). Binary Particle Swarm Optimization for selection of features in the recognition of infants cries with asphyxia. In Signal Processing and its Applications (CSPA), 2011 IEEE 7th International Colloquium on (pp. 272-276).10.1109/CSPA.2011.5759886
  92. Zabidi, A., Mansor, W., Lee Yoot Khuan, Yassin, I., & Sahak, R. (2011). Threedimensional particle swam optimisation of Mel Frequency Cepstrum Coefficient computation and Multilayer Perceptron neural network for classifying asphyxiated infant cry. In Computer Applications and Industrial Electronics (ICCAIE), 2011 IEEE International Conference on (pp. 290-293).
Language: English, German
Page range: 4 - 15
Submitted on: Nov 14, 2014
|
Accepted on: Jan 22, 2015
|
Published on: May 29, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2015 Tanja Fuhr, Henning Reetz, Carla Wegener, published by ZHAW Zurich University of Applied Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.