ARSO, 2017. Archive – observed and measured meteorological data in Slovenia. WEB Site: http://meteo.arso.gov.si/met/sl/archive/. Accesed: 2017 August 8.
Ballesteros JA, Stoffel M, Bollschweiler M, Bodoque JM and Díez-Herrero A, 2010. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiology 30(6): 773–781, DOI 10.1093/treephys/tpq031.
Balybina AS, 2010. Reconstructing the air temperature from dendrochronological data from the Preolkhon area using the neural network method. Geography and Natural Resources 31(1): 30−33, DOI 10.1016/j.gnr.2010.03.006.
Billings SA, Glaser SM, Boone AS and Stephen FM, 2015. Nonlinear tree growth dynamics predict resilience to disturbance. Ecosphere 6(11): 1–13, DOI 10.1890/ES15-00176.1.
Braak CJFT and Gremmen NJM, 1987. Ecological Amplitudes of Plant Species and the Internal Consistency of Ellenberg's Indicator Values for Moisture. Vegetatio 69(1/3): 79–87, DOI 10.1007/BF00038689.
Briffa KR, Jones PD, Pilcher JR and Hughes MK, 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D.1700 using tree ring data from Scots Pine. Arctic and Alpine Research 20: 385–394, DOI 10.2307/1551336.
Campelo F, Nabais C, Gutierrez E, Freitas H and Garcia-Gonzalez I, 2010. Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees-Structure and Function 24(3): 463–470, DOI 10.1007/s00468-010-0414-0.
Cook ER and Kairiukstis LA, 1992. Methods of Dendrochronology : Applications in the Environmental Sciences Dordrecht, Kluwer Academic Publishers: 394 pp.
Cook ER and Pederson N, 2011. Uncertainty, Emergence, and Statistics in Dendrochronology. In: Hughes MK, TW Swetnam, HF Diaz, eds., Dendroclimatology: Progress and Prospects Springer Netherlands, Dordrecht: 77−112.
Copini P, den Ouden J, Robert EMR, Tardif JC, Loesberg WA, Goudzwaard L and Sass-Klaassen U, 2016. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees. Frontiers in Plant Science 7: 775, DOI 10.3389/fpls.2016.00775.
D'Odorico P, Revelli R and Ridolfi L, 2000. On the use of neural networks for dendroclimatic reconstructions. Geophysical Research Letters 27(6): 791−794, DOI 10.1029/1999GL011049.
Fonti P and Garcia-Gonzalez I, 2008. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. Journal of Biogeography 35(12): 2249−2257, DOI 10.1111/j.1365-2699.2008.01961.x.
Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H and Eckstein D, 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185(1): 42–53, DOI 10.1111/j.1469-8137.2009.03030.x.
Garcia-Gonzalez I and Eckstein D, 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497–504, DOI 10.1093/treephys/23.7.497.
Garcia-Gonzalez I and Fonti P, 2008. Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees-Structure and Function 22(2): 237–244, DOI 10.1007/s00468-007-0180-9.
Gonzalez-Gonzalez BD, Garcia-Gonzalez I and Vazquez-Ruiz RA, 2013. Comparative cambial dynamics and phenology of Quercus robur L. and Q-pyrenaica Willd. in an Atlantic forest of the northwestern Iberian Peninsula. Trees-Structure and Function 27(6): 1571–1585, DOI 10.1007/s00468-013-0905-x.
González-González BD, Vázquez-Ruiz RA and García-González I, 2015. Effects of climate on earlywood vessel formation of Quercus robur and Q. pyrenaica at a site in the northwestern Iberian Peninsula. Canadian Journal of Forest Research 45(6): 698–709, DOI 10.1139/cjfr-2014-0436.
Goršić E, 2013. Diameter increment dynamics of pedunculate oak (Quercus robur L.) in Croatia. Ph.D. dissertation, University of Zagreb, Zagreb: 154 pp.
Hastie T, Tibshirani R and Friedman JH, 2009. The Elements of Statistical Learning : Data Mining, Inference, and Prediction. New York, Springer: 745 pp.
Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Merilainen J and Eronen M, 2009. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Annales Geophysicae 27(3): 1097−1111, DOI 10.5194/angeo-27-1097-2009.
Helama S, Sohar K, Läänelaid A, Bijak S and Jaagus J, 2018. Reconstruction of precipitation variability in Estonia since the eighteenth century, inferred from oak and spruce tree rings. Climate Dynamics 50(11): 4083–4101, DOI 10.1007/s00382-017-3862-z.
Ho TK, 1995. Random decision forests In Proceedings of the Third International Conference on Document Analysis and Recognition. Montreal, Canada: 278−282 pp.
Hornik K, Buchta C and Zeileis A, 2009. Open-source machine learning: R meets Weka. Computational Statistics 24(2): 225−232, DOI 10.1007/s00180-008-0119-7.
Jevšenak J, Džeroski S and Levanič T, 2017. On the use of machine learning methods to study the relationships between tree-ring characteristics and the environment. Acta silvae et ligni 114: 21−29, DOI 10.20315/ASetL.114.2.
Jevšenak J and Levanič T, 2014. Macro EWVA - an effective tool for analysis of earlywood conduits of ring porous species. Acta silvae et ligni 104: 15−24, DOI 10.20315/ASetL.104.2.
Jevšenak J and Levanič T, 2015. Dendrochronological and wood-anatomical features of differently vital pedunculate oak Quercus robur L.) stands and their response to climate. Topola 195/196: 85−96.
Jevšenak J and Levanič T, 2016. Should artificial neural networks replace linear models in tree ring based climate reconstructions? Dendrochronologia 40: 102−109, DOI 10.1016/j.dendro.2016.08.002.
Jevšenak J and Levanič T, 2018. dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia 48: 32−39, DOI 10.1016/j.dendro.2018.01.005.
Jones PD and Bradley RS, 1992. Climatic variations in the longest instrumental records. In: Jones PD, RS Bradley, eds., Climate Since A.D. 1500 Routledge, London: 246−268.
Kames S, Tardif JC and Bergeron Y, 2016. Continuous earlywood vessels chronologies in floodplain ring-porous species can improve dendrohydrological reconstructions of spring high flows and flood levels. Journal of Hydrology 534: 377–389, DOI 10.1016/j.jhydrol.2016.01.002.
Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Benesty M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T and the R Core Team, 2017. caret: Classification and Regression Training. R package version 6.0-76, WEB Site: https://CRAN.R-project.org/package=caret. Accesed: 2017 August 10.
Lorenz EN, 1956. Empirical Orthogonal Functions and Statistical Weather Prediction Massachusetts, Massachusetts Institute of Technology, Department of Meteorology: 49 pp.
Matisons R and Dauškane I, 2009. Influence of climate on earlywood vessel formation of Quercus robur at its northern distribution range in central regions of Latvia. Acta Universitatis Latviensis 753: 49–58.
Montoro Girona M, Rossi S, Lussier J-M, Walsh D and Morin H, 2017. Understanding tree growth responses after partial cuttings: A new approach. PLoS ONE 12(2): e0172653, DOI 10.1371/journal.pone.0172653.
Ni FB, Cavazos T, Hughes MK, Comrie AC and Funkhouser G, 2002. Cool-season precipitation in the southwestern USA since AD 1000: Comparison of linear and nonlinear techniques for reconstruction. International Journal of Climatology 22(13): 1645−1662, DOI 10.1002/joc.804.
Perez-de-Lis G, Rossi S, Vazquez-Ruiz RA, Rozas V and Garcia-Gonzalez I, 2016. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 209(2): 521–530, DOI 10.1111/nph.13610.
Pérez-Rodríguez P and Gianola D, 2016. Brnn: Brnn (Bayesian Regularization forFeed-forward Neural Networks). R package version 0.6, WEB Site: http://CRAN.R-project.org/package=brnn. Accesed: 2017 April 20.
Pérez-Rodríguez P, Gianola D, Weigel KA, Rosa GJM and Crossa J, 2013. Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. Journal of Animal Science 91(8): 3522–3531, DOI 10.2527/jas.2012-6162.
Quinlan JR, 1992. Learning with continuous classes In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (AI '92). Hobart: 343−348 pp.
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, WEB Site: http://www.R-project.org/. Accesed: 2017 November 15.
Sass-Klaassen U, Sabajo CR and den Ouden J, 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29(3): 171–175, DOI 10.1016/j.dendro.2011.01.002.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P and Cardona A, 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9(7): 676−682, DOI 10.1038/nmeth.2019.
Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP and Sandberg G, 2003. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proceedings of the National Academy of Sciences of the United States of America 100(17): 10096–10101, DOI 10.1073/pnas.1633693100.
Shishov VV, Tychkov II, Popkova MI, Ilyin VA, Bryukhanova MV and Kirdyanov AV, 2016. VS-oscilloscope: A new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39: 42–50, DOI 10.1016/j.dendro.2015.10.001.
St George S and Nielsen E, 2000. Signatures of high-magnitude 19th-century floods in Quercus macrocarpa tree rings along the Red River, Manitoba, Canada. Geology 28(10): 899–902, DOI 10.1130/0091-7613(2000)28<;899:SOHTFI>2.0.CO;2.
Sun Y, Bekker MF, DeRose RJ, Kjelgren R and Wang SYS, 2017. Statistical treatment for the wet bias in tree-ring chronologies: A case study from the Interior West, USA. Environmental and Ecological Statistics 24(1): 131−150, DOI 10.1007/s10651-016-0363-x.
Tolwinski-Ward SE, Evans MN, Hughes MK and Anchukaitis KJ, 2011. An efficient forward model of the climate controls on inter-annual variation in tree-ring width. Climate Dynamics 36(11–12): 2419−2439, DOI 10.1007/s00382-010-0945-5.
Tumajer J and Treml V, 2016. Response of floodplain pedunculate oak Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185–194, DOI 10.1016/j.foreco.2016.08.013.
Vaganov EA, Anchukaitis KJ and Evans MN, 2011. How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics. In: Hughes MK, TW Swetnam, HF Diaz, eds., Dendroclimatology: Progress and Prospects. Developments in Paleoenvironmental Research Springer Netherlands, 11: 37–75.
Williams AP, Michaelsen J, Leavitt SW and Still CJ, 2010. Using Tree Rings to Predict the Response of Tree Growth to Climate Change in the Continental United States during the Twenty-First Century. Earth Interactions 14(19): 1–20, DOI 10.1175/2010EI362.1.