Antronico L, Borrelli L, Coscarelli R, Pasqua AA, Petrucci O and Gullà G, 2013. Slope movements induced by rainfalls damaging an urban area: the Catanzaro case study (Calabria, southern Italy). Landslides 10(6): 801–814, 10.1007/s10346-013-0431-3.
Bollschweiler M, Stoffel M, Ehmisch M and Monbaron M, 2007. Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology 87(4): 337–351, 10.1016/j.geomorph.2006.10.002.
Bovenga F, Pasquariello G, Pellicani R, Refice A and Spilotro G, 2017. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena 151: 49–62, 10.1016/j.catena.2016.12.006.
Butler DR, 1987. Teaching general principles and applications of dendrogeomorphology. Journal of Geological Education 35(2): 64–70, 10.5408/0022-1368-35.2.64.
Carrara A, Guzzetti F, Cardinali M and Reichenbach P, 1999. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards 20(2–3): 117–135, 10.1023/A:1008097111310.
Carrara A, Crosta G and Frattini P, 2003. Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms 28(10): 1125–1142, 10.1002/esp.545.
Catani F, Casagli N, Ermini L, Righini G and Menduni G, 2005. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4): 329–342, 10.1007/s10346-005-0021-0.
Central Office of Geodesy and Cartography (CODGiK), 2015. Digital elevation data, Available at: http://www.codgik.gov.pl/index.php/zasob/numeryczne-dane-wysokosciowe.html
Chase RB, Chase KE, Kehew AE and Montgomery WW, 2001. Determining the kinematics of slope movements using low-cost monitoring and cross-section balancing. Environmental and Engineering Geoscience 7(2): 193–203, 10.2113/gseegeosci.7.2.193.
Chen H and Petley DN, 2005. The impact of landslides and debris flows triggered by Typhoon Mindulle in Taiwan. Quarterly Journal of Engineering Geology and Hydrogeology 38(3): 301–304, 10.1144/1470-9236/04-077.
Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology 124: 137–149, 10.1016/j.geomorph.2010.09.001.
Crawford MH, Crowley K, Potter SH, Saunders WSA and Johnston D, 2018. Risk modelling as a tool to support natural hazard risk management in New Zealand local government. International Journal of Disaster Risk Reduction 28: 610–619, 10.1016/j.ijdrr.2018.01.011.
Demoulin A and Chung CJ, 2007. Mapping landslide susceptibility from small datasets: A case study in the Pays de Herve (E Belgium). Geomorphology 89(3): 391–404, 10.1016/j.geomorph.2007.01.008.
Di Piazza A, Lo Conti F, Noto LV, Viola F and La Loggia G, 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geoinformation 13(3): 396–408, 10.1016/j.jag.2011.01.005.
Evans NC, Huang SW and King JP, 1999. The natural terrain landslide study phases I and II. GEO Report No. 73, Geotechnical Engineering Office, Hong Kong SAR Government.
Fall M, Azzam R and Noubactep C, 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Engineering Geology 82(4): 241–263, 10.1016/j.enggeo.2005.11.007.
Gärtner H, Stoffel M, Lièvre I, Conus D, Grichting M and Monbaron M, 2003. Debris-flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, Switzerland. In: Rickenmann D and Chen Ch, eds., Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment 1: 207–217.
Gong G, Mattevada S and O’Bryant SE, 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating ground water arsenic concentrations in Texas. Environmental Research 130: 59–69, 10.1016/j.envres.2013.12.005.
Guida D, Pelfini M and Santilli M, 2008. Geomorphological and dendrochronological analyses of a complex landslide in the Southern Apennines. Geografiska Annaler. Series A, Physical Geography 90(3): 211–226, 10.1111/j.1468-0459.2008.340.x.
Guzzetti F, Cardinali M, Reichenbach P and Carrara A, 2000. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environmental Management 25(3): 247–263, 10.1007/s002679910020.
Guzzetti F, Ardizzone F, Cardinali M, Rossi M and Valigi D, 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters 279: 222–229, 10.1016/j.epsl.2009.01.005.
Haneberg WC, Cole WF and Kasali G, 2009. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment 68: 263–276, 10.1007/s10064-009-0204-3.
Hess M, 1965. Piętra klimatyczne w polskich Karpatach Zachodnich (Climatic zones in the Polish Western Carpathians). Zeszyty Naukowe Uniwersytetu Jagiellońskiego 155, Prace Geograficzne 11: 1–268 (in Polish).
Hutchinson MF, 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106(3–4): 211–232, 10.1016/0022-1694(89)90073-5.
Innes JL, 1983. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surface Processes and Landforms 8: 579–588, 10.1002/esp.3290080609.
Ives JD and Bovis MJ, 1978. Natural Hazards Maps for Land-Use Planning, San Juan Mountains, Colorado, U.S.A. Arctic and Alpine Research 10(2): 185–212, 10.2307/1550752.
Journault J, Macciotta R, Hendry MT, Charbonneau F, Huntley D and Bobrowsky PT, 2018. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides 15(4): 621–636, 10.1007/s10346-017-0900-1.
Lebourg T, Hernandez M, Zerathe S, El Bedoiu S, Jomard H and Fresia B, 2014. Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Engineering Geology 114(3–4): 238–250, 10.1016/j.enggeo.2010.05.001.
Lee MJ, Park I, Won JS and Lee S, 2016. Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomatics, Natural Hazards and Risk 7(1): 424–446, 10.1080/19475705.2014.931307.
Li J and Heap AD, 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software 53: 173–189, 10.1016/j.envsoft.2013.12.008.
Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, 10.1016/j.geomorph.2011.08.034.
Mahmood I, Qureshi SN, Tariq S, Atique L and Iqbal MF, 2015. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake. PLOS Currents Disasters. 2015 Aug 26. Edition 1, 10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99.
Mahr T and Malgot J, 1978. Zoning maps for regional and urban development based on slope stability. In: Proceedings of the Third International Congress of the I.A.E.G. (Madrid), Spain 1(1): 124–137.
Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe). Geochronometria 34(1): 57–66, 10.2478/v10003-009-0011-7.
Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180–196, 10.2478/s13386-012-0005-5.
Malik I, Wistuba M, Migoń P and Fajer M, 2016. Activity of Slow-Moving Landslides Recorded in Eccentric Tree Rings of Norway Spruce Trees (Picea Abies Karst.) — An Example from the Kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 43(1): 24–37, 10.1515/geochr-2015-0028.
Malik I, Wistuba M, Tie Y, Owczarek P, Woskowicz-Ślęzak B and Łuszczyńska K, 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography 87: 54–65, 10.1016/j.apgeog.2017.08.003.
Micu M and Bălteanu D, 2013. A deep-seated landslide dam in the Siriu Reservoir (Curvature Carpathians, Romania). Landslides 10 (3): 323–329, 10.1007/s10346-013-0382-8.
Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Silhán K, 2010. Complex landslide terrain in the Kamienne Mountains, middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, 10.1016/j.geomorph.2010.09.024.
Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F and Guzzetti F, 2015. Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12(2): 277–291, 10.1007/s10346-014-0473-1.
Netto ALC, Sato AM, Avelar A de S, Vianna LGG, Araújo IS, Ferreira DLC, Lima PH, Silva APA and Silva RP, 2013. January 2011: The Extreme Landslide Disaster in Brazil. In: Margottini C, Canuti P and Sassa K, eds., Landslide Science and Practice. Springer, Berlin, Heidelberg.
Papciak T, Malik I, Krzemień K, Wistuba M, Gorczyca E, Wrońska-Wałach D and Sobucki M, 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography. Physical Geography Series 8: 5–17, 10.1515/bgeo-2015-0001.
Paudel PP, Omura H, Kubota T and Morita K, 2003. Landslide damage and disaster management system in Nepal. Disaster Prevention and Management 12(5): 413–419, 10.1108/09653560310507235.
Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – A dendrogeomorphological case study. Geomorphology 74(1–4): 219–231, 10.1016/j.geomorph.2005.08.009.
Perrone A, Lapenna V and Piscitelli S, 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews 135: 65–82, 10.1016/j.earscirev.2014.04.002.
Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K and Mitchell WA, 2007. Trends in landslide occurrence in Nepal. Natural Hazards 43(1): 23–44, 10.1007/s11069-006-9100-3.
Petley DN, 2010. On the impact of climate change and population growth on the occurrence of fatal landslides in South, East and SE Asia. Quarterly Journal of Engineering Geology and Hydrogeology 43: 487–496, 10.1144/1470–9236/09–001.
Piegari E, Cataudella V, Di Maio R, Nicodemi M, Soldovieri MG, 2009. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. Journal of Applied Geophysics 68(2): 151–158, 10.1016/jjappgeo.2008.10.014.
Pham BT, Bui DT and Prakash I, 2018. Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. In: Mal S, Singh R and Huggel C, eds., Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham, 1–12, 10.1007/978-3-319-56469-211.
Qui J, Wang X, He S, Liu H, Lai J and Wang L, 2017. The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017. Natural Hazards 89(3): 1485–1493, 10.1007/s11069-018-3241-z.
Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Chamlagain D and Godt JW, 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301: 121–138, 10.1016/j.geomorph.2017.01.030.
Rybář J, 1999. Slope movements inducted by torrential rains in the region of Carpathians flysch (in Czech). Proc. I. Conf. Geology and Environment. Bratislava, 24–25 January 2001: 77–78.
Sandić C, Abolmasov B, Marjanović M, Begović P and Jolović B, 2017. Landslide Disaster and Relief Activities: A Case Study of Urban Area of Doboj City. In: Mikoš M, Arbanas Ž, Yin Y and Sassa K, eds., Advancing Culture of Living with Landslides. WLF 2017, Springer, Cham, 383–393, 10.1007/978-3-319-53487-9_45.
Schlögel R, Malet JP, Reichenbach P, Remaître A and Doubre C, 2015. Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study. Natural Hazards and Earth System Sciences 15(10): 2369–2389, 10.5194/nhess-15-2369-2015.
Schweingruber FH, 1996. Tree Rings and Environment. Dendroecology. Birmensdorf; Berne: Swiss Federal Institute for Forest, Snow and Landscape Research, WSL/FNP; Paul Haupt.
Shroder JF, 1980. Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography 4(2): 161–188, 10.1177/030913338000400202.
Šilhán K and Stoffel M, 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43, 10.1016/j.geomorph.2015.02.003.
Šilhán K, 2016. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movements. Geomorphology 253: 189–198, 10.1016/j.geomorph.2015.10.012.
Šilhán K, Prokešová R, Medveďová A and Tichavský R, 2016. The effectiveness of dendrogeomorphic methods for reconstruction of past spatio-temporal landslide behavior. Catena 147: 325–333, 10.1016/j.catena.2016.07.035.
Šilhán K, 2017. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surface Processes and Landforms 42(13): 2109–2118, 10.1002/esp.4153.
Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63(3–4): 191–202, 10.1016/j.geomorph.2004.04.003.
Stoffel M, 2005. Spatio-temporal variations of rockfall activity into forests – results from tree-ring and tree analysis. PhD thesis No. 1480, University of Fribourg, GeoFocus, 12.
Stoffel M, Butler DR and Corona C, 2013. Mass movements and tree rings: A guide to dendrogeomorphic field sampling and dating. Geomorphology 200: 106–120, 10.1016/j.geomorph.2012.12.017.
Uhlemann S, Wilkinson PB, Chambers JE, Maurer H, Merritt AJ, Gunn DA and Meldrum PI, 2015. Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. Journal of Applied Geophysics 121: 93–105, 10.1016/j.jappgeo.2015.07.003.
Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek LPH and Vandekerckhove L, 2007. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms 32: 754–769, 10.1002/esp.1417.
Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J and Beeckman H, 2009. Evidence for repeated reactivation of old landslides under forest. Earth Surface Processes and Landforms 34(3): 352–365, 10.1002/esp.1727.
Winchester V and Chaujar RK, 2002. Lichenometric dating of slope movements, Nant Ffrancon, North Wales. Geomorphology 47: 61–74, 10.1016/S0169-555X(02)00141-1.
Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena 111: 41–55, 10.1016/j.catena.2013.06.027.
Wistuba M and Malik I, 2016. Dendrochronologiczna ocena przestrzennej zmienności zagrożenia osuwiskowego w masywie góry Prusów (Beskid Żywiecki) (Dendrochronological assessment of spatial distribution of landslide hazard in the massif of Mt Prusów (Beskid Żywiecki Mts)). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie 18, 48(3): 150–160 (in Polish).
Xu Q, Fan XM, Huang RQ and Van Westen C, 2009. Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bulletin of Engineering Geology and the Environment 68(3): 373–386, 10.1007/s10064-009-0214-1.
Zielonka T and Dubaj N, 2009. A tree-ring reconstruction of geomorphologie disturbances in cliff forests in the Tatra Mts. Landform Analysis 11: 71–76.
Zielonka T and Malcher P, 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe — a dendroecological reconstruction. Canadian Journal of Forest Research 39(11): 2215–2223, 10.11397X09-130.