[2] Susanne Apel and Jürgen Richter-Gebert. Cancellation patterns in automatic geometric theorem proving. In Automated Deduction in Geometry, pages 1–33. Springer, 2010.10.1007/978-3-642-25070-5_1
[4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
[7] Laurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51–67. Springer, 2010.10.1007/978-3-642-25070-5_3
[11] Xiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1–10, 2010. doi:10.2478/v10037-010-0001-2.10.2478/v10037-010-0001-2
[12] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.10.1007/978-3-642-21046-4_7
[13] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s thesis.
[16] Jürgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence, 13(1-2):139–172, 1995.10.1007/BF01531327
[17] Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science & Business Media, 2011.10.1007/978-3-642-17286-1