Have a personal or library account? Click to login
On Multiset Ordering Cover
Open Access
|Dec 2016

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
  2. [2] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
  3. [3] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
  7. [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  8. [8] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17(3):279–301, 1982. doi:10.1016/0304-3975(82)90026-3.10.1016/0304-3975(82)90026-3
  9. [9] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Communications of the ACM, 22(8):465–476, 1979. doi:10.1145/359138.359142.10.1145/359138.359142
  10. [10] Gerard Huet and Derek C. Oppen. Equations and rewrite rules: A survey. Technical report, Stanford, CA, USA, 1980.10.1016/B978-0-12-115350-2.50017-8
  11. [11] Jean-Pierre Jouannaud and Pierre Lescanne. On multiset ordering. Information Processing Letters, 15(2):57–63, 1982. doi:10.1016/0020-0190(82)90107-7.10.1016/0020-0190(82)90107-7
  12. [12] Robert Milewski. Natural numbers. Formalized Mathematics, 7(1):19–22, 1998.
  13. [13] Eliza Niewiadomska and Adam Grabowski. Introduction to formal preference spaces. Formalized Mathematics, 21(3):223–233, 2013. doi:10.2478/forma-2013-0024.10.2478/forma-2013-0024
  14. [14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
  15. [15] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
  16. [16] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. Formalized Mathematics, 1(2):387–393, 1990.
DOI: https://doi.org/10.1515/forma-2016-0008 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 95 - 106
Submitted on: Dec 31, 2015
|
Published on: Dec 8, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Grzegorz Bancerek, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.