Have a personal or library account? Click to login
Hybrid C&RT-Logit Models In Churn Analysis Cover
Open Access
|Jun 2015

References

  1. Breiman, L., Friedman, J., Stone, C.J. & Olshen, R.A. (1984). Classification and Regression Trees. New York: Chapman and Hall.
  2. Buckinx, W. & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164, 252–268.10.1016/j.ejor.2003.12.010
  3. Burez, J. & Van den Poel, D. (2007). CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Systems with Applications, 32, 277–288.10.1016/j.eswa.2005.11.037
  4. Christopher, M., Payne, A. & Ballantyne, D. (2008). Relationship Marketing. Creating Stakeholder Value, 5 ed. Oxford: Butterworth-Heinemann.
  5. Coussement, K. & Van den Poel, D. (2008). Churn prediction in subscription services: An applications of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34, 313–327.10.1016/j.eswa.2006.09.038
  6. Customer Retention: A Business Imperative (2004). Baxter Strategies Incorporated. New York: Woodbury.
  7. Farris, P.W., Bendle, N.T., Pfeifer, P.E. & Reibstein, D.J. (2006). Marketing Metrics: 50+ Metrics Every Executive Should Master. New Jersey: Wharton School Publishing.
  8. Giudici, P. & Dequarti, E. (2011). Statistical Models to Predict Academic Churn Risk. In: Classification and Multivariate Analysis for Complex Data Structures, eds. B. Fichet, D. Piccolo, R. Verde, M. Vichi (pp. 41–49). Berlin, Heidelberg: Springer-Verlag.
  9. Gummesson, E. (2008). Total relationship marketing. 3 ed. Oxford: Butterworth-Heinemann.
  10. Gupta, S. & Zeithaml, V. (2006) Customer Metrics and Their Impact on Financial Performance. Marketing Science, 29 (6), 718–739.10.1287/mksc.1060.0221
  11. Idris, A., Khan, A. & Lee, Y.S. (2013). Intelligent churn prediction in telecom: employing mRMR feature selection and RotBoost based ensemble classification. Applied Intelligence, 39, 659–672.10.1007/s10489-013-0440-x
  12. Jeffery, M. (2010). Data-Driven Marketing. The 15 Metrics Everyone in Marketing Should Know. Hoboken, NJ: John Wiley & Sons.
  13. Kim, S., Shin, K.S. & Park, K. (2005). An Application of SVM for Customer Churn Analysis: Credit Card Case. In: Advances in Natural Computation. Lecture Notes in Computer Science, eds. L. Wang, K. Chen, Y.S. Ong (pp. 636–647). Berlin, Heidelberg: Springer-Verlag. Vol. 3611.
  14. Liao, K.H. & Chueh, H.E. (2011). Applying Fuzzy Data Mining to Telecom Churn Management. In: Intelligent Computing and Information Science. Communications in Computer and Information Science, ed. R. Chen (pp. 259–264). Berlin, Heidelberg: Springer-Verlag. Vol. 134.
  15. Lindahl, W.E. & Winship, C. (1994). A Logit Model with Interactions for Predicting Major Gift Donors. Research in Higher Education, 35 (6), 729–743.10.1007/BF02497084
  16. Łapczyński, M. (in press), The use of hybrid predictive C&RT-logit models in analytical CRM, Second European Conference on Data Analysis, ECDA 2014, July 2–4, Jacobs University, Bremen, “Program and Abstracts”, http://ecda2014.eu.
  17. Miguéis, V.L., Van den Poel, D., Camanho, A.S. & Falcão e Cunha, J. (2012). Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences. Advances in Data Analysis and Classification, 6, 337–353.10.1007/s11634-012-0121-3
  18. Morik, M. & Köpcke, H. (2004). Analysing Customer Churn in Insurance Data – A Case Study. In: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, eds. J.F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi (pp. 325–336). Berlin, Heidelberg: Springer-Verlag.
  19. Naveen, N., Ravi, V. & Rao, C.R. (2010). Data Mining via Rules Extracted from GMDH: An Application to Predict Churn in Bank Credit Cards. In: Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes in Computer Science, eds. R. Setchi, I. Jordanov, R.J. Howlett, LC. Jain (pp. 80–89). Berlin, Heidelberg: Springer-Verlag. Vol. 6276.
  20. Phadke, C., Uzunalioglu, H., Mendiratta, V.B., Kushnir, D. & Doran, D. (2013). Prediction of Subscriber Churn Using Social Network Analysis. Bell Labs Technical Journal, 17 (4), 63–76.10.1002/bltj.21575
  21. Sheth, J.N. & Parvatiyar, A. (2000). Relationship Marketing in Consumer Markets. Antecedents and Consequences. In: Handbook of Relationship Marketing, eds. J.N. Sheth, A. Parvatiyar (pp. 171–208). Thousand Oaks, CA: Sage Publications.
  22. Steinberg, D. & Cardell, N.S. (1998): The hybrid CART-logit model in classification and data mining, www.salford-systems.com (14.10.2007).
  23. Van den Poel, D. & Larivière, B. (2004). Customer attrition analysis for financial services using proportional hazard models. European Journal of Operational Research, 157, 196–217.10.1016/S0377-2217(03)00069-9
DOI: https://doi.org/10.1515/foli-2015-0006 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 37 - 52
Submitted on: Apr 14, 2014
Accepted on: Oct 24, 2014
Published on: Jun 3, 2015
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Mariusz Łapczyński, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.