Have a personal or library account? Click to login
Place Classification using Dempster-Shafer Theory Cover

References

  1. [1] https://www.tensorow.org/.
  2. [2] Althaus P. and Christensen H. I. Behavior coordination in structured environments. Advanced Robotics, 17(7):657–674, 2003.10.1163/156855303769157009
  3. [3] Anguelov D., Biswas R., Koller D., Limketkai B., Sanner S., and Thrun S. Learning hierarchical object maps of non-stationary environments with mobile robots. In Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), Edmonton, Canada, 2002.
  4. [4] Bogler P. L. Shafer-Dempster reasoning with applications to multisensor target identification systems. IEEE Transactions on Systems, Man, and Cybernetics, 17:968–977, 1987.10.1109/TSMC.1987.6499307
  5. [5] Buschka P. and Saffiotti A. A virtual sensor for room detection. In Intelligent Robots and Systems (IROS), pages 637–642, 2002.
  6. [6] Chen Z., Lam O., Jacobson A., and Milford M. Convolutional neural network-based place recognition. CoRR, abs/1411.1509, 2014.
  7. [7] Dellaert F., Fox D., Burgard W., and Thrun S. Monte Carlo localization for mobile robots. In IEEE Int. Conf. on Robotics & Automation (ICRA), 1998.
  8. [8] Friedman S., Pasula H., and Fox D. Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI, 2007.
  9. [9] Harasymowicz-Boggio B., Chechlinski L., and Siemiatkowska B. Nature-inspired, parallel object recognition. In Szewczyk R., Zieliski C., and Kaliczyska M., editors, Progress in Automation, Robotics and Measuring Techniques. Control and Automation. Advances in Intelligent Systems and Computing vol. 350, pages 53–62. Springer, 2015.10.1007/978-3-319-15796-2_6
  10. [10] Harasymowicz-Boggio B., Chechlinski L., and Siemiatkowska B. Significance of features in object recognition using depth sensors. Optica Applicata, 45(4):559–571, 2015.10.1007/978-3-319-02294-9_71
  11. [11] Himstedt M., Frost J., Hellbach S., Bhme H. J., and Maehle E. Large scale place recognition in 2d lidar scans using geometrical landmark relations. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5030–5035, Sept 2014.10.1109/IROS.2014.6943277
  12. [12] Jousselme A.-L., Liu C., Grenier D., and Bosse E. Measuring ambiguity in the evidence theory. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 36(5):890–903, Sept 2006.10.1109/TSMCA.2005.853483
  13. [13] Jung H., Mozos O. M., Iwashita Y., and Kurazume R. Local n-ary patterns: a local multi-modal descriptor for place categorization. Advanced Robotics, 30(6):402–415, 2016.
  14. [14] Koenig S. and Simmons R. G. Xavier: A robot navigation architecture based on partially observable markov decision process models. In Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pages 91–122. MIT Press, 1998.
  15. [15] Milford M., Scheirer W. J., Vig E., Glover A., Baumann O., Mattingley J., and Cox D. D. Condition-invariant, top-down visual place recognition. In The IEEE International Conference on Robotics and Automation (ICRA), June 2014.10.1109/ICRA.2014.6907678
  16. [16] Mozos O. M., Triebel R., Jensfelt P., Rottman A., and Burgard W. Supervised semantic labeling of places using information extracted from sensor data. Robotics and Autonomous Systems, 5:392–402, 2007.
  17. [17] Nistér D. and Stewénius H. Scalable recognition with a vocabulary tree. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 2161–2168, June 2006.
  18. [18] Oliva A. and Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision, 42(3):145–175, May 2001.10.1023/A:1011139631724
  19. [19] Premebida C. and Faria U., Diego R. and Nunes. Dynamic bayesian network for semantic place classification in mobile robotics. Autonomous Robots, 41(5), 2017.10.1007/s10514-016-9600-2
  20. [20] Quattoni A. and Torralba A. Recognizing indoor scenes. In IEEE International Conference on Computer Vision and Pattern Recognition, pages 413 – 420, 2009.10.1109/CVPR.2009.5206537
  21. [21] Renninger L. W. and Malik J. When is scene identification just texture recognition? Vision Research, 44(19):2301–2311, September 2004.10.1016/j.visres.2004.04.00615208015
  22. [22] Smarandache F. and Dezert J. Information fusion based on new proportional conflict redistribution rules. In Information Fusion, 2005 8th International Conference on, volume 2, pages 8–pp. IEEE, 2005.10.1109/ICIF.2005.1591955
  23. [23] Teichman A. and Thrun S. Practical object recognition in autonomous driving and beyond. In ARSO, pages 35–38, 2011.10.1109/ARSO.2011.6301978
  24. [24] Torralba A. Contextual priming for object detection. Int. J. Comput. Vision, 53(2):169–191, July 2003.10.1023/A:1023052124951
  25. [25] Ullah M. M., Pronobis A., Caputo B., Luo J., Jensfelt P., and Christensen H. I. Towards robust place recognition for robot localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA08), 2008.10.1109/ROBOT.2008.4543261
  26. [26] Vasudevan S. and Siegwart R. Bayesian space conceptualization and place classification for semantic maps in mobile robotics. Robot. Auton. Syst., 56(6):522–537, June 2008.10.1016/j.robot.2008.03.005
  27. [27] Yang S., Mou W., Wang H., and Ge S. S. Place recognition by combining multiple feature types with a modified vocabulary tree. In 2015 International Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1–6, Nov 2015.
  28. [28] Yi C., Suh I. H., Lim G. H., and Choi B. Bayesian robot localization using spatial object contexts. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 11-15, 2009, St. Louis, MO, USA, pages 3467–3473, 2009.10.1109/IROS.2009.5354462
  29. [29] Zadeh L. A. Fuzzy sets. Information and Control, 8:338–353, 1965.10.1016/S0019-9958(65)90241-X
  30. [30] Zhou B., Khosla A., Lapedriza À., Oliva A., and Torralba A. Learning deep features for discriminative localization. CoRR, abs/1512.04150, 2015.
  31. [31] Zhou B., Lapedriza A., Xiao J., Torralba A., and Oliva A. Learning deep features for scene recognition using places database. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS’14, pages 487–495, Cambridge, MA, USA, 2014. MIT Press.
  32. [32] Zhou B., Lapedriza A., Xiao J., Torralba A., and Oliva A. Learning deep features for scene recognition using places database. In NIPS, 2014.
DOI: https://doi.org/10.1515/fcds-2017-0013 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 257 - 273
Published on: Sep 9, 2017
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Barbara Siemiątkowska, Bogdan Harasymowicz-Boggio, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.