Have a personal or library account? Click to login
Keypoint-Less, Heuristic Application of Local 3D Descriptors Cover

Keypoint-Less, Heuristic Application of Local 3D Descriptors

Open Access
|Sep 2017

References

  1. [1] Heuros 3D object recognition system. https://bitbucket.org/rrgwut/heuros. Accessed: 04-05-2015.
  2. [2] Aldoma, A., et al. CAD-model recognition and 6DOF pose estimation using 3D cues. In IEEE International Conference on Computer Vision Workshops, ICCV 2011 Workshops, Barcelona, Spain, November 6-13, 2011, 585–592. 2011.10.1109/ICCVW.2011.6130296
  3. [3] Alexandre, L. A. 3D descriptors for object and category recognition: a comparative evaluation. In Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura, Portugal, 2012.
  4. [4] Alexandre, L. A. Set distance functions for 3D object recognition. In 18th Iberoamerican Congress on Pattern Recognition, volume LNCS 8258 of Lecture Notes in Computer Science, 57–64. Springer, Havana, Cuba, 2013.10.1007/978-3-642-41822-8_8
  5. [5] Cupec, R., et al. Detection of planar surfaces based on ransac and lad plane fitting. In Petrovic, I., Lilienthal, A. J., editors, ECMR, 37–42. KoREMA, 2009.
  6. [6] Farid, R. Region-Growing Planar Segmentation for Robot Action Planning, 179–191. Springer International Publishing, Cham, 2015.10.1007/978-3-319-26350-2_16
  7. [7] Filipe, S., Alexandre, L. A. A comparative evaluation of 3d keypoint detectors in a rgb-d object dataset. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP). 2014.
  8. [8] Filipe, S., Itti, L., Alexandre, L. A. BIK-BUS: Biologically motivated 3D keypoint based on bottom-up saliency. IEEE Transactions on Image Processing, 24(1):163–175, 2015.
  9. [9] Ghorpade, V. K., et al. Performance evaluation of 3d keypoint detectors for time-of-fight depth data. In 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), 1–6. 2016.10.1109/ICARCV.2016.7838686
  10. [10] Harasymowicz-Boggio, B., Chechliński, L., Siemiatkowska, B. Nature-inspired, parallel object recognition. In Szewczyk, R., Zieliński, C., Kaliczyńska, M., editors, Progress in Automation, Robotics and Measuring Techniques. Control and Automation. Advances in Intelligent Systems and Computing vol. 350. Springer, 2015.10.1007/978-3-319-15796-2_6
  11. [11] Harasymowicz-Boggio, B., Chechliński, u., Siemiatkowska, B. Significance of features in object recognition using depth sensors. Optica Applicata, 45(4):559–571, 2015.10.1007/978-3-319-02294-9_71
  12. [12] Holz, D., et al. Robot soccer world cup xv. chapter Real-time Plane Segmentation Using RGB-D Cameras, 306–317. Springer-Verlag, Berlin, Heidelberg, 2012.10.1007/978-3-642-32060-6_26
  13. [13] Izadi, S., et al. Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th annual ACM symposium on User interface software and technology, UIST ‘11, 559–568. ACM, New York, NY, USA, 2011.10.1145/2047196.2047270
  14. [14] Kalogerakis, E., Hertzmann, A., Singh, K. Learning 3D mesh segmentation and labeling. ACM Trans. Graph., 29(4).10.1145/1778765.1778839
  15. [15] Lai, K., Bo, L., Fox, D. Unsupervised feature learning for 3D scene labeling. In IEEE International Conference on on Robotics and Automation. 2014.10.1109/ICRA.2014.6907298
  16. [16] Nathan Silberman, P. K., Derek Hoiem, Fergus, R. Indoor segmentation and support inference from RGBD images. In ECCV. 2012.10.1007/978-3-642-33715-4_54
  17. [17] Neves, A. J. R., et al. Object detection based on plane segmentation and features matching for a service robot. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 10(4):745 – 752, 2016.
  18. [18] Osada, R., et al. Shape distributions. ACM Transactions on Graphics, 21(4):807–832, 2002.10.1145/571647.571648
  19. [19] Quigley, M., et al. Ros: an open-source robot operating system. In ICRA Workshop on Open Source Software. 2009.
  20. [20] Ren, X., Bo, L., Fox, D. RGB-D scene labeling: Features and algorithms. In IEEE International Conference on Computer Vision and Pattern Recognition, 2759–2766. 2012.
  21. [21] Rusu, R. B., Blodow, N., Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In in In Proceedings of the International Conference on Robotics and Automation (ICRA. 2009.10.1109/ROBOT.2009.5152473
  22. [22] Rusu, R. B., Cousins, S. 3d is here: Point cloud library (pcl). In International Conference on Robotics and Automation. Shanghai, China, 2011.10.1109/ICRA.2011.5980567
  23. [23] Rusu, R. B., et al. Learning Informative Point Classes for the Acquisition of Object Model Maps. In Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), Hanoi, Vietnam, December 17-20. 2008.10.1109/ICARCV.2008.4795593
  24. [24] Rusu, R. B., et al. Close-range scene segmentation and reconstruction of 3d point cloud maps for mobile manipulation in domestic environments. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1–6. 2009.10.1109/IROS.2009.5354683
  25. [25] Rusu, R. B., et al. Detecting and segmenting objects for mobile manipulation. In Proceedings of IEEE Workshop on Search in 3D and Video (S3DV), held in conjunction with the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan, 2009.
  26. [26] Rusu, R. B., et al. Fast 3d recognition and pose using the viewpoint feature histogram. In Proceedings of the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Taipei, Taiwan, 2010.10.1109/IROS.2010.5651280
  27. [27] Song, S., Xiao, J. Deep sliding shapes for amodal 3d object detection in RGB-D images. CoRR, abs/1511.02300, 2015.
DOI: https://doi.org/10.1515/fcds-2017-0012 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 239 - 255
Published on: Sep 9, 2017
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Bogdan Harasymowicz-Boggio, Łukasz Chechliński, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.