Have a personal or library account? Click to login
A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties Cover

A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties

Open Access
|Aug 2018

References

  1. [1] N. Vikram and R. Kumar, “Review on fatigue-crack growth and finite element method,” Int. J. Sci. Eng. Res., vol. 4, no. 4, pp. 833–843, 2013.
  2. [2] F. Bergner, G. Zouhar, and G. Tempus, “The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime,” Int. J. Fatigue, vol. 23, pp. 383–394, 2001.10.1016/S0142-1123(01)00006-8
  3. [3] J. H. Melson, “Fatigue crack growth analysis with finite element methods and a monte carlo simulation,” Thesis Master, Faculty of the Virginia Polytechnic Institute, 2014.
  4. [4] T. Mann, “The influence of mean stress on fatigue crack propagation in aluminium alloys,” Int. J. Fatigue, vol. 29, no. 8, pp. 1393–1401, 2007.
  5. [5] A. E. M. Alaoui, “Influence du chargement sur la propagation en fatigue de fissures courtes dans un acier de construction navale,” Thesis Doctor, University of Metz, 2005.
  6. [6] K. Alrubaie, E. Barroso, and L. Godefroid, “Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy,” Int. J. Fatigue, vol. 28, no. 8, pp. 934–942, Aug. 2006.10.1016/j.ijfatigue.2005.09.008
  7. [7] J.-K. Kim and D.-S. Shim, “The variation in fatigue crack growth due to the thickness effect,” Int. J. Fatigue, vol. 22, pp. 611–618, 2000.10.1016/S0142-1123(00)00032-3
  8. [8] J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading),” Int. J. Fatigue, vol. 31, pp. 418–424, 2009.10.1016/j.ijfatigue.2008.07.015
  9. [9] J. C. Newman, “The merging of fatigue and fracture mechanics concepts: a historical perspective,” Prog. Aerosp. Sci., vol. 34, no. 5–6, pp. 347–390, 1998.10.1016/S0376-0421(98)00006-2
  10. [10] M. Vormwald, “Fatigue crack propagation under large cyclic plastic strain conditions,” Procedia Mater. Sci., vol. 3, pp. 301–306, 2014.10.1016/j.mspro.2014.06.052
  11. [11] P. Johansingh, C. Mukhopadhyay, T. Jayakumar, S. Mannan, and B. Raj, “Understanding fatigue crack propagation in AISI 316 (N) weld using Elber’s crack closure concept: Experimental results from GCMOD and acoustic emission techniques,” Int. J. Fatigue, vol. 29, no. 12, pp. 2170–2179, Dec. 2007.
  12. [12] M. Vormwald, “Effect of cyclic plastic strain on fatigue crack growth,” Int. J. Fatigue, pp. 1–9, 2015.
  13. [13] K. Prasad, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman, “Effects of crack closure and cyclic deformation on thermomechanical fatigue crack growth of a Near α Titanium Alloy,” Metall. Mater. Trans. A, vol. 47A, no. 7, pp. 3713–3730, Jul. 2016.
  14. [14] H. L. Ewalds, “The effect of environment on fatigue crack closure in Aluminium alloys,” Eng. Fract. Mechamics, vol. 13, pp. 1001–1006, 1980.
  15. [15] J. R. Lloyd, “The effect of residual stress and crack closure on fatigue crack growth,” University of Wollongong Thesis Collection, 1999.
  16. [16] L. Lawson, E. Y. Chen, and M. Meshii, “Near-threshold fatigue: a review,” Int. J. Fatigue, vol. 21, pp. 15–34, 1999.10.1016/S0142-1123(99)00053-5
  17. [17] P. Pao, H. Jones, S. Cheng, and C. Feng, “Fatigue crack propagation in ultrafine grained Al–Mg alloy,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1164–1169, Oct. 2005.
  18. [18] T. Hanlon, E. D. Tabachnikova, and S. Suresh, “Fatigue behavior of nanocrystalline metals and alloys,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1147–1158, 2005.
  19. [19] K. Pandey and S. Chand, “An energy based fatigue crack growth model,” Int. J. Fatigue, vol. 25, no. 8, pp. 771–778, Aug. 2003.10.1016/S0142-1123(03)00049-5
  20. [20] P. J. Huffman, “A strain energy based damage model for fatigue crack initiation and growth,” Int. J. Fatigue, vol. 88, pp. 197–204, 2016.10.1016/j.ijfatigue.2016.03.032
  21. [21] N. W. Klingbeil, “A total dissipated energy theory of fatigue crack growth in ductile solids,” Int. J. Fatigue, vol. 25, pp. 117–128, 2003.10.1016/S0142-1123(02)00073-7
  22. [22] S. C. Wu, Z. W. Xu, C. Yu, O. L. Kafka, and W. K. Liu, “A physically short fatigue crack growth approach based on low cycle fatigue properties,” Int. J. Fatigue, vol. 103, pp. 185–195, Oct. 2017.10.1016/j.ijfatigue.2017.05.006
  23. [23] A. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for fatigue crack growth analysis,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1277–1296, Oct. 2005.
  24. [24] A. Noroozi, G. Glinka, and S. Lambert, “A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force,” Int. J. Fatigue, vol. 29, no. 9–11, pp. 1616–1633, 2007.
  25. [25] R. C. Dimitriu and H. K. D. H. Bhadeshia, “Fatigue crack growth rate model for metallic alloys,” Mater. Des., vol. 31, pp. 2134–2139, 2010.
  26. [26] J. C. Radon, “A model for fatigue crack growth in a threshold region,” Int. J. Fatigue, vol. 4, no. 3, pp. 161–166, 1982.10.1016/0142-1123(82)90044-5
  27. [27] K. M. Lal and S. B. L. Garg, “A fatigue crack propagation model for strain hardening materials,” Eng. Fract. Mechamics, vol. 9, pp. 939–949, 1977.10.1016/0013-7944(77)90014-5
  28. [28] B. Tomkins, “Fatigue crack propagation – an analysis,” Phil Mag, vol. 18, no. 155, pp. 1041–1066, 1968.
  29. [29] N. A. Fleck, K. J. Kang, and M. F. Ashby, “The cyclic properties of engineering materials,” Acta Metall. Materalia, vol. 42, pp. 365–381, 1994.10.1016/0956-7151(94)90493-6
  30. [30] K. K. Shi, L. X. Cai, S. Qi, and C. Bao, “Prediction of fatigue crack growth based on low cycle fatigue properties,” Eng. Fract. Mech., pp. 1–18, 2013.
  31. [31] K. K. Shi, L. X. Cai, L. Chen, S. C. Wu, and C. Bao, “A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties,” Int. J. Fatigue, vol. 158, pp. 209–219, Apr. 2016.10.1016/j.engfracmech.2016.02.046
  32. [32] A. Tzamtzis and A. T. Kermanidis, “Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties,” Frat. ed Integrità Strutt., vol. 35, pp. 396–404, 2016.10.3221/IGF-ESIS.35.45
  33. [33] S. K. Paul and S. Tarafder, “Cyclic plastic deformation response at fatigue crack tips,” Int. J. Press. Vessel. Pip., vol. 101, pp. 81–90, 2013.10.1016/j.ijpvp.2012.10.007
  34. [34] F. V. Antunes, R. Branco, P. A. Prates, and L. Borrego, “Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 40, no. 8, pp. 1309–1320, Aug. 2017.
  35. [35] B. Ould Chikh, A. Imad, and M. Benguediab, “Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel,” Comput. Mater. Sci., vol. 43, pp. 1010–1017, 2008.
  36. [36] S. C. Forth, C. W. Wright, and W. M. Johnston, “7075-T6 and 2024-T351 aluminum alloy fatigue crack growth rate data,” NASA Cent. Aerosp. Inf., no. 213907, pp. 1–19, 2005.
  37. [37] A. Tzamtzis and A. T. Kermanidis, “Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 0, pp. 1–13, 2014.10.1111/ffe.12163
  38. [38] A. Fatemi, A. Plaseied, A. K. Khosrovaneh, and D. Tanner, “Application of bi-linear log-log S-N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions,” Int. J. Fatigue, vol. 27, pp. 1040–1050, 2005.
  39. [39] S. Mikheevskiy, “Elastic-plastic fatigue crack growth analysis under variable amplitude loading spectra,” Thesis Doctor, University of Waterloo of Canada, 2009.10.1016/j.ijfatigue.2009.02.035
  40. [40] J. T. P. Castro, Fatigue - Volume II - Propagation of cracks, thermal and stochastic effects. 2009.
  41. [41] J. Colin, “Deformation history and load sequence effects on cumulative fatigue damage and life predictions,” Thesis Doctor, University of Toledo Digital Repository, 2010.
  42. [42] A. Saoudi, “Prédiction de la rupture par fatigue dans les pièces automobiles en alliages aluminium,” Thesis Doctor, University of Quebec of Chicoutimi, 2008.10.1522/030032462
  43. [43] A. H. Noroozi, G. Glinka, and S. Lambert, “Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains,” Eng. Fract. Mech., vol. 75, no. 2, pp. 188–206, 2008.10.1016/j.engfracmech.2007.03.024
  44. [44] ASTM E 647-00, “Standard test method for measurement of fatigue crack growth rates,” ASTM Int., vol. 3, pp. 1–43, 2001.
  45. [45] C. Jingjie, H. Yi, D. Leilei, and L. Yugang, “A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load,” Eng. Fract. Mech., vol. 126, pp. 141–154, 2014.10.1016/j.engfracmech.2014.05.001
  46. [46] D. Chen, K. Shirato, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, “Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures,” J. Am. Ceram. Soc., vol. 84, pp. 2914–2920, 2001.
  47. [47] F. Khelil, B. Aour, M. Belhouari, and N. Benseddiq, “Modeling of fatigue crack propagation in aluminum alloys using an energy based approach,” Eng. Technol. Appl. Sci. Res., vol. 3, pp. 488–496, 2013.10.48084/etasr.329
  48. [48] S. Ray and J. M. C. Kishen, “Energy based fatigue crack propagation model for plain concrete,” Fract. Mech. Concr. Concr. Struct., vol. 8, pp. 978–989, 2010.
  49. [49] S. B. Chakrabortty, “A model relating low cycle fatigue properties and microstructure to fatigue crack propagation rates,” Fatigue Eng. Mater. Struct., vol. 2, pp. 331–344, 1979.10.1111/j.1460-2695.1979.tb01091.x
  50. [50] J. Wasé and E. Heier, “Fatigue crack growth thresholds—the influence of Young’s modulus and fracture surface roughness,” Int. J. Fatigue, vol. 20, no. 10, pp. 737–742, 1998.10.1016/S0142-1123(98)00034-6
  51. [51] S. Groh, S. Olarnrithinun, W. A. Curtin, A. Needleman, V. S. Deshpande, and E. Van der Giessen, “Fatigue crack growth from a cracked elastic particle into a ductile matrix,” Philos. Mag., vol. 88, no. 30–32, pp. 3565–3583, Oct. 2008.
  52. [52] Y. Xiang, Z. Lu, and Y. Liu, “Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading,” Int. J. Fatigue, vol. 32, no. 2, pp. 341–349, 2010.10.1016/j.ijfatigue.2009.07.011
  53. [53] M. Ndiaye, S. Gaye, Z. Azari, and G. Pluvinage, “Propagation de fissures en fatigue par chocs,” J. des Sci., vol. 6, no. 1, pp. 22–29, 2006.
  54. [54] B. Ould Chikh, J. M. N. A. Imad, and M. Benguediab, “Influence de la variabilité des paramètres de la relation de Paris sur la prédiction de la durée de vie en fatigue,” vol. 4, pp. 27–31, 2007.
  55. [55] Z. Gao, W. Sun, Y. Wang, and F. Zhang, “Fatigue crack growth properties of typical pressure vessel steels at high temperature,” in 18th International Conference on Structural Mechanics in Reactor Technology, 2005, pp. 1754–1761.
DOI: https://doi.org/10.1515/fas-2017-0010 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 117 - 135
Published on: Aug 9, 2018
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Tayeb Kebir, Mohamed Benguediab, Abdellatif Imad, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.