Have a personal or library account? Click to login
Effects of water turbulence on plant, sediment and water quality in reed (Phragmites australis) community Cover

Effects of water turbulence on plant, sediment and water quality in reed (Phragmites australis) community

Open Access
|Mar 2017

References

  1. Asaeda, T., Siong, K., Kawashima, T. & Sakamoto K. (2009). Growth of Phragmites japonica on a sandbar of regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res. Appl., 25, 874−891. DOI: 10.1002/rra.1191.10.1002/rra.1191
  2. Asaeda, T., Gomes, P.I.A. & Takeda E. (2010a). Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Res. Appl., 26, 960−976. DOI: 10.1002/ rra.1313.
  3. Asaeda, T., Rajapakse, L. & Kanoh M. (2010b). Fine sediment retention as affected by annual shoot collapse: Sparganium erectum as an ecosystem engineer in a lowland stream. River Res. Appl., 26, 1153−1169. DOI: 10.1002/ rra.1322.10.1002/rra.1322
  4. Asaeda, T. & Shinohara R. (2012). Japanese lakes. In L. Bengtsson, R. Herschy & R. Fairbridge (Eds.), Encyclopedia of lakes and reservoirs (pp. 415−419). Netherlands: Springer.
  5. Atapaththu, K.S.S. & Asaeda T. (2015). Growth and stress responses of Nuttall’s waterweed Elodea nuttallii (Planch) St. John to water movements. Hydrobiologia, 747, 217−233. doi : 10.1007/s10750-014-2141-9.
  6. Bal, K.D., Bouma, T.J., Buis, K., Struyf, E., Jonas, S., Backx, H. & Meire P. (2011). Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Funct. Ecol., 25, 1197−1205. DOI: 10.1111/j.1365-2435.2011.01909.x.10.1111/j.1365-2435.2011.01909.x
  7. Bernhardt-Romermann, M., Gray, A., Vanbergen, A.J., Berges, L., Bohner, A., Brooker, R.W., De Bruyn, L., De Cinti, B., Dirnbock, T., Grandin, U., Hester, A.J., Kanka, R., Klotz, S., Loucougaray, G., Lundin, L., Matteucci, G., Meszaros, I., Olah, V., Preda, E., Prevosto, B., Pykala, J., Schmidt, W., Taylor, M.E., Vadineanu, A., Waldmann, T. & Stadler J. (2011). Functional traits and local environment predict vegetation responses to disturbance: a pan- European multi-site experiment. J. Ecol., 99, 777−787. DOI: 10.1111/j.1365-2745.2011.01794.x.10.1111/j.1365-2745.2011.01794.x
  8. Bornette, G. & Puijalon S. (2011). Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73, 1−14. doi : 10.1007/s00027-010-0162-7.
  9. Chambers, P.A., Prepas, E.E., Hamilton, H.R. & Bothwell M.L. (1991). Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl., 1, 249−257. DOI: 10.2307/1941754.10.2307/194175427755769
  10. Coops, H. & Van der Velde G. (1996). Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat. Bot., 53, 175−185. doi : 10.1016/0304-3770(96)01026-1.
  11. Ellawala, C., Asaeda, T. & Kawamura K. (2012). The effect of flow turbulence on growth, nutrient uptake and stable carbon and nitrogen isotope signatures in Chara fibrosa. Ann. Limnol., 48, 349−354. DOI: 10.1051/limn/2012024.10.1051/limn/2012024
  12. Ellawala, C., Asaeda, T. & Kawamura K. (2013). Water movement induced variations in growth regulation and metabolism of freshwater macrophyte Vallisneria spiralis L. in early growth stages. Hydrobiologia, 709, 173−182. doi : 10.1007/s10750-013-1447-3.
  13. Engloner, A.I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. Flora - Morphology, Distribution, Functional Ecology of Plants, 204, 331−346. doi : 10.1016/j.flora.2008.05.001.
  14. Fonseca, M.S. & Fisher J.S. (1986). Comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar. Ecol.- Progress Series, 29, 15−22.10.3354/meps029015
  15. Green, J.C. (2005). Velocity and turbulence distribution around lotic macrophytes. Aquat. Ecol., 39, 1−10. doi : 10.1007/s10452-004-1913-0.
  16. Hans, B. (1994). Functions of macrophytes in constructed wetlands. Water Sci. Technol., 29, 71−78.
  17. Horinouchi, M., Kume, G., Yamaguchi, A., Toda, K. & Kurata K. (2008). Food habits of small fishes in a common reed Phragmites australis belt in Lake Shinji, Shimane, Japan. Ichthyol. Res., 55, 207−217. doi : 10.1007/s10228-007-0021-2.
  18. Horne, A.J. & Goldman C.R. (1994). Limnology. New York: McGraw-Hill.
  19. Horppila, J., Kaitaranta, J., Joensuu, L. & Nurminen L. (2013). Influence of emergent macrophyte (Phragmites australis) density on water turbulence and erosion of organic-rich sediment. Journal of Hydrodynamics, Ser. B, 25, 288−293. doi : 10.1016/S1001-6058(13)60365-0.
  20. Komuro, T., Sakayamai, H., Kamiya, H. &Yamamuro M. (2016). Reconstruction of the charophyte community of Lake Shinji by oospore collection. Knowledge and Management of Aquatic Ecosystems, 417, 12. DOI: 10.1051/ kmae/2015045.
  21. Krolová, M., Čižkova, H., Hejzlar, J. & Polakova S. (2013). Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowledge and Management of Aquatic Ecosystem, 408, 07. DOI: 10.1051/kmae/2013042.10.1051/kmae/2013042
  22. Leonard, L.A. & Reed D.J. (2002). Hydrodynamics and sediment transport through tidal marsh canopies. J. Coast.
  23. Res. SI, 36, 459−469.
  24. Leonard, L.A. & Croft A.L. (2006). The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar. Coast. Shelf Sci., 69, 325−336. doi : 10.1016/j.ecss.2006.05.004.
  25. Madsen, J.D., Chambers, P.A., James, W.F., Koch, E.W. & Westlake D.F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71−84. doi : 10.1023/A:1017520800568.
  26. Melinda, K. & Janos J. (2014). Measurements-based hydrodynamic characterisation of reed-open water interface zone in shallow lake environment. Periodica Polytechnica Civil Engineering, 58, 229−241. DOI: 10.3311/ PPci.7569.
  27. Olson, E.R., Ventura, S.J. & Zedler J.B. (2012). Merging geospatial and field data to predict the distribution and abundance of an exotic macrophyte in a large Wisconsin reservoir. Aquat. Bot., 96, 31−41. doi : 10.1016/j. aquabot.2011.09.007.
  28. Sand-Jensen, K. & Pedersen O. (1999). Velocity gradients and turbulence around macrophyte stands in streams.10.1046/j.1365-2427.1999.444495.x
  29. Freshw. Biol., 42, 315−328. DOI: 10.1046/j.1365-2427.1999.444495.x.10.1046/j.1365-2427.1999.444495.x
  30. Schutten, J., Dainty, J. & Davy A.J. (2004). Wave‐induced hydraulic forces on submerged aquatic plants in Shallow Lakes. Ann. Bot., 93, 333−341. doi : 10.1093/aob/mch043.
  31. Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schroder, U., Fuchs, E., Troch, P., Bouma, T.J., Meire, P. & Temmerman S. (2015). Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE, 10, e0118687. DOI: 10.1371/journal.pone.0118687.10.1371/journal.pone.0118687437056125799017
  32. Struyf, E., Van Damme, S., Gribsholt, B., Bal, K., Beauchard, O., Middelburg, J.J. & Meire P. (2007). Phragmites australis and silica cycling in tidal wetlands. Aquat. Bot., 87, 134−140. doi : 10.1016/j.aquabot.2007.05.002.
  33. Thomaz, S., Bini, L. & Bozelli R. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems.10.1007/s10750-006-0285-y
  34. Hydrobiologia, 579, 1−13. doi : 10.1007/s10750-006-0285-y.
DOI: https://doi.org/10.1515/eko-2017-0001 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 1 - 9
Published on: Mar 21, 2017
Published by: Institute of Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Keerthi Sri Senarathna Atapaththu, Takashi Asaeda, Masumi Yamamuro, Hiroshi Kamiya, published by Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.