Have a personal or library account? Click to login
Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen Cover

Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen

Open Access
|Nov 2016

References

  1. Allison, V.J. & Miller R.M. (2004). Using fatty acids to quantify arbuscular mycorrhizal fungi. In G. Podila & A. Varma (Eds.), Mycorrhizae: basic research and applications (pp. 141−161). New Delhi: I.K. International Pvt. Ltd.
  2. Bååth, E. (2003). The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol., 45, 373-383. DOI: 10.1007/s00248-003-2002-y.10.1007/s00248-003-2002-y12704558
  3. Bardgett, R.D., Hobbs, P.J. & Frostegård A. (1996). Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils, 22, 261-264. DOI: 10.1007/bf00382522.10.1007/BF00382522
  4. Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64, 269-285. DOI: 10.1016/j.ecolecon.2007.03.004.10.1016/j.ecolecon.2007.03.004
  5. Binet, S., Gogo, S. & Laggoun-Défarge F. (2013). A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. J. Hydrol., 499, 132-139. DOI: 10.1016/j.jhydrol.2013.06.035.10.1016/j.jhydrol.2013.06.035
  6. Bligh, E.G. & Dyer W.J. (1959). A rapid method of total lipide extraction and purification. Can. J. Biochem. Physiol., 37, 911−917. DOI: 10.1139/o59-099.10.1139/o59-09913671378
  7. Bull, I.D., Nisha, R.P., Grahame, H.H., Ineson, P. & Evershed R.P. (2000). Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature, 405, 175-178. DOI: 10.1038/35012061.10.1038/3501206110821271
  8. Canuel, E.A., Cloern, J.E., Ringelberg, D.B., Guckert, J.B. & Rau G.H. (1995). Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr., 40(1), 67−81. DOI: 10.4319/lo.1995.40.1.0067.10.4319/lo.1995.40.1.0067
  9. Chilová, V. (2000). Selected peatland ecosystems of the Protected Landscape Area Veľká Fatra and the contiguous territory of Turiec basin (in Slovak). In V. Stanová (Ed.), Rašeliniská Slovenska (pp. 63−68). Bratislava: Daphne - Inštitút aplikovanej ekológie.
  10. Cooper, J.N., Anderson, J.G. & Campbell C.D. (2002). How resilient are microbial communities to temperature changes during composting? In H. Insam, N. Riddech & S. Klammer (Eds.), Microbiology of Composting (pp. 3−16). Berlin: Springer. DOI: 10.1007/978-3-662-08724-4_1.10.1007/978-3-662-08724-4_1
  11. Frostegård, Å. & Bååth E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils, 22, 59-65. DOI: 10.1007/BF00384433.10.1007/BF00384433
  12. Frostegård, Å., Tunlid, A. & Bååth E. (2011). Use and misuse of PLFA measurements in soils. Soil Biol. Biochem., 43, 1621-1625. DOI: 10.1016/j.soilbio.2010.11.021.10.1016/j.soilbio.2010.11.021
  13. Frouz, J., Elhottová, D., Baldrián, P., Chroňáková, A., Lukešová, A., Nováková, A. & Krištůfek V. (2013). Soil microflora development in post-mining sites. In J. Frouz (Ed.), Soil biota and ecosystem development in post mining sites (pp. 105-131). CRC Press. DOI: 10.1201/b15502-8.10.1201/b15502-8
  14. Galvánek, D. (Ed.) (2007). Unique botanical areas in Slovakia (in Slovak). Bratislava: Daphne - Inštitút aplikovanej ekológie.
  15. Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton W.J. (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. DOI: 10.1046/j.1365-2486.2000.00349.x.10.1046/j.1365-2486.2000.00349.x
  16. Hajjar, R., Jarvis, D.I. & Gemmill-Herren B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ., 123, 261-270. DOI: 10.1016/j.agee.2007.08.003.10.1016/j.agee.2007.08.003
  17. Hanajík, P. & Fritze H. (2009). Effects of forest management on soil properties at windthrow area in Tatra National Park (TANAP). Acta Environmentalica Universitatis Comenianae, 17(2), 36-46.
  18. Hedrick, D.B., Peacock, A.D. & White D.C. (2007). Lipid analyses for viable microbial biomass, community composition, metabolic status, and in situ metabolism. In C.J. Hurst, R.L. Crawford, J.L. Garland, D.A. Lipson, A.L. Mills & L.D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 112−125). Washington: ASM Press.
  19. Högberg, M.N., Högberg, P. & Myrold D.D. (2006). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590-601. DOI: 10.1007/s00442-006-0562-5.10.1007/s00442-006-0562-517033802
  20. Holmes, A.J., Roslev, P., McDonald, I.R., Iversen, N., Henriksen, K. & Murrell J.C. (1999). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol., 65, 3312-3318.10.1128/AEM.65.8.3312-3318.19999149710427012
  21. Hultman, J., Vasara, T., Partanen, P., Kurola, J., Kontro, M.H., Paulin, L., Auvinenm, P. & Romantschuk M. (2010). Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. J. Appl. Microbiol., 108, 472-487. DOI: 10.1111/j.1365-2672.2009.04439.x.10.1111/j.1365-2672.2009.04439.x19656238
  22. IMCG-International Mire Conservation Group (2015). Threatened Peatlands of the World, Natural reserve Rojkovské rašelinisko, Rojkov Fen Nature Reserve, SR. http://www.imcg.net/pages/topics/threat/rojkov-fen.php[3.02.2015].
  23. Jankovská, V. (1997). Evolution of peatbogs in Czech and Slovak Republic and cryogenic aspects - facts and hypothesis (in Slovak). In T. Baranec (Ed.), Flóra a vegetácia rašelinísk (pp. 51−54). Nitra: SPU.
  24. Karsisto, M., Kitunen, V., Laiho, R., Laine, J., Tiainen, U., Savitski, M. & Penttilä T. (2002). Identification and quantification of organic fractions in litter and peat organic matter during decomposing processes. In L. Pietola & M. Esala (Eds.), Maa, josta elämme. II. Maaperätieteiden päivät, Helsinki 19.-20.11.2002. Laajennetut abstraktit. Pro Terra, 15, 36−38.
  25. Karsisto, M., Savitski, M., Kitunen, V., Penttilä, T., Laine, J. & Laiho R. (2003). Quantification of organic fractions in litter and peat organic matter. In J.O. Honkanen & P.S. Koponen (Eds.), Proceedings of Sixth Finnish Conference of Environmental Sciences (pp. 135−137). Joensuu, May 8-9, 2003. Current Perspectives in Environmental Science and Technology. Finnish Society for Environmental Sciences, University of Joensuu.
  26. Kates, M. (1986). Techniques in lipidology: isolation, analysis, and identification of lipids. Amsterdam: Elsevier.
  27. King, J.D., White, D.C. & Taylor C.W. (1977). Use of lipid composition and metabolism to examine structure and activity of estuarine detrial microflora. Appl. Environ. Microbiol., 33, 1177-1183.10.1128/aem.33.5.1177-1183.197717084516345244
  28. Korkama, T., Fritze, H., Pakkanen, A. & Pennanen T. (2006). Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol., 173, 798-807. DOI: 10. 1111/j.1469-8137.2006.01957.x.10.1111/j.1469-8137.2006.01957.x17286828
  29. Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen R. (2005). Carbon and decomposition model Yasso for forest soils. Ecol. Model., 189, 168-182. DOI: 10.1016/j.ecolmodel.2005.03.005.10.1016/j.ecolmodel.2005.03.005
  30. Lost, S., Makeschin, F., Abiy, M. & Haubrich F. (2008). Biotic soil activities. In E. Beck, J. Bendix, I. Kottke, F. Makeschin & R. Mosandl (Eds.), Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies, 198, 217−227. DOI: 10.1007/978-3-540-73526-7.10.1007/978-3-540-73526-7
  31. Madan, R., Pankhurst, C., Hawke, B. & Smith S. (2002). Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol. Biochem., 34, 125-128. DOI: 10.1016/S0038-0717(01)00151-1.10.1016/S0038-0717(01)00151-1
  32. Maron, P. A., Mougel, C. & Ranjard L. (2011). Soil microbial diversity: Methodological strategy, spatial overview and functional interest. C. R. Biol., 334, 403-411. DOI: 10.1016/j.crvi.2010.12.003.10.1016/j.crvi.2010.12.003
  33. Mohanty, S.R., Bodelier, P.L.E. & Corad V.F.R. (2006). Differential effects of nitrogenous fertilizers on methaneconsuming microbes in rice field and forest soils. Appl. Environ. Microbiol., 72, 1346-1354. DOI: 10.1128/AEM.72.2.1346-1354.2006.10.1128/AEM.72.2.1346-1354.2006
  34. Palojärvi, A. (2006). Phospholipid Fatty Acid (PLFA) analyses. In J. Bloem, D.W. Hopkins & A. Benedetti (Eds.), Microbiological methods for assessing soil quality (pp. 204−211). Wallingford: CABI Publishing.
  35. Pinkart, H.C., Ringelberg, D.B., Piceno, Y.M. Macnaughton, S.J. & White D.C. (2002). Biochemical approaches to biomass measurements and community structure analysis. In C.J. Hurst (Ed.), Manual of environmental microbiology (pp. 101-113). Washington: ASM Press.
  36. Ringelberg, D.B., Stair, J.O., Almeida, J., Norby, R.J., O’Neill, E.G. & White D.C. (1997). Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J. Environ. Qual., 26, 495-503. DOI: 10.2134/jeq1997.0047242500. 2600020022x.
  37. Rousk, J., Brookes, P.C. & Bååth E. (2010). The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem., 42, 516-520. DOI: 10.1016/j.soilbio.2009.11.026.10.1016/j.soilbio.2009.11.026
  38. Ryan, M.G., Melillo, J.M. & Ricca A. (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Can. J. For. Res., 20, 166-171. DOI: 10.1139/x90-023.10.1139/x90-023
  39. Sakamoto, K., Iijima, R. & Higuchi R. (2004). Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbusbular mycorrhizal fungus Gigaspora rosea. Soil Biol. Biochem., 36, 1827-1834. DOI: 10.1016/j.soilbio.2004.04.037.10.1016/j.soilbio.2004.04.037
  40. Shotyk, W., Goodsite, M.E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C. & Hansen T.S. (2003). Anthropogenic contributions to atmospheric Hg, Pb, and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geoch. Cosm. Acta, 67, 3991-4011. DOI: 10.1016/S0016-7037(03)00409-5.10.1016/S0016-7037(03)00409-5
  41. Stanová, V. (2000). Current distribution and threats to peatlands in Slovakia (in Slovak). In V. Stanová (Ed.), Rašeliniská Slovenska (pp. 3-9). Bratislava: DAPHNE - Inštitút aplikovanej ekológie.
  42. Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G. & Gerzabek M.H. (2007). An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett., 5, 9−12. DOI: 10.1007/s10311-006-0079-5.10.1007/s10311-006-0079-5
  43. ter Braak, C.J.F. (1994). Basic theory and linear methods. Canonical community ordination. Part I. Ecoscience, 1, 127-140. 10.1080/11956860.1994.11682237
  44. ter Braak, C.J.F. & Smilauer P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Itaca: Microcomputer power. www.canoco.com.
  45. Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., Smith, S., Fyles, J., Wein, R., Camire, C., Duschene, L., Kozak, L., Kranabetter, M. & Visser S. (2002). Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. For. Res., 32, 789-804. DOI: 10.1139/x01-117.10.1139/x01-117
  46. Vallejo, V.E., Arbeli, Z., Terán, W., Lorenz, N., Dick, R.P. & Roldan F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric. Ecosyst. Environ., 150, 139-148. DOI: 10.1016/j.agee.2012. 01.022.
  47. Van Roon, M.R. (2012). Wetlands in the Netherlands and New Zealand: Optimising biodiversity and carbon sequestration during urbanisation. J. Environ. Manag., 101, 143−150. DOI: 10.1016/j.envman.2011.08.026.
  48. Vávřová, P., Penttilä, T. & Laiho R. (2009). Decomposition of Scots pine fine woody debris in boreal conditions:Implications for estimating carbon pools and fluxes. For. Ecol. Manag., 257, 401-412. DOI: 10.1016/j.foreco.2008.09.017.10.1016/j.foreco.2008.09.017
  49. Weiss, R., Shurpali, N.J., Sallantaus, T., Laiho, R., Laine, J. & Alm J. (2006). Simulation of water table level and peat temperature in boreal peatlands. Ecol. Model., 192, 441-456. DOI: 10.1016/j.ecolmodel.2005.07.016.10.1016/j.ecolmodel.2005.07.016
  50. Welc, M., Frossard, E., Egli, S., Bünemann, E.K. & Jansa J. (2014). Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biol. Biochem., 74, 21-30. DOI: 10.1016/j.soilbio.2014.02.014.10.1016/j.soilbio.2014.02.014
  51. White, D.C., Davis, W.M., Nickels, J.S., King, J.D. & Bobbie R.J. (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51-62. DOI: 10.1007/BF00388810.10.1007/BF00388810
  52. White, D.C., Pinkart, H.C. & Ringelberg D.B. (1997). Biomass measurements: biochemical approaches. In C.H. Hurst, G. Knudsen, M. McInerney, L.D. Stetzenbach & M. Walter (Eds.), Manual of environment microbiology (pp. 91-101). Washington: American Society for Microbiology Press.
  53. Wieder, R.K. & Starr S.T. (1998). Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci. Plant Anal., 29, 847-857. DOI: 10.1080/00103629809369990.10.1080/00103629809369990
  54. Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A. & Morris M. (2011). Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci. Total Environ., 409, 2010-2018. DOI: 10.1016/j.scitotenv.2011.02.036.10.1016/j.scitotenv.2011.02.036
  55. Zak, D.R., Ringelberg, D.B., Pregitzer, K.S., Randlett, D.L., White, D.C. & Curtis P.S. (1996). Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol. Appl., 6, 257-262. DOI: 10.2307/2269568.10.2307/2269568
  56. Zelles, L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35, 275-294. DOI: 10.1016/S0045-6535(97)00155-0.10.1016/S0045-6535(97)00155-0
  57. Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils, 29, 111-129. DOI: 10.1007/s003740050533.10.1007/s003740050533
  58. Zogg, G.P., Zak, D.R., Ringelberg, D.B., MacDonald, N.W., Pregitzer, K.S. & White D.C. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J., 61, 475-481. DOI: 10.2136/sssaj1997.03615995006100020015x.10.2136/sssaj1997.03615995006100020015x
DOI: https://doi.org/10.1515/eko-2016-0024 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 295 - 308
Published on: Nov 30, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Peter Hanajík, Milan Zvarík, Hannu Fritze, Ivan Šimkovic, Róbert Kanka, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.