Have a personal or library account? Click to login
Spatial Heterogeneity of Mechanical Impedance of Atypical Chernozem: The Ecological Approach Cover

Spatial Heterogeneity of Mechanical Impedance of Atypical Chernozem: The Ecological Approach

Open Access
|Sep 2016

References

  1. Bayhan, Y., Kayisoglu, B. & Gonulol E. (2002). Effect of soil compaction on sunflower growth. Soil Tillage Res., 68, 31–38. DOI: 10.1016/S0167-1987(02)00078-8.10.1016/S0167-1987(02)00078-8
  2. Belgard, A.L. (1950). The forest vegetation in South East of Ukraine (in Russian). Kiev: Kiev University Press.
  3. Bets, T.J. (2013). Spatial variability of the soil mechanical impedance and its connection with electrical conductivity and productivity of sunflower (in Russian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 3(2), 30−44.10.7905/bbmspu.v0i2(8).610
  4. Blanchet, F.G., Legendre, P. & Borcard D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623−2632. DOI: 10.1890/07-0986.1.10.1890/07-0986.1
  5. Bobrovskij, M.V. (2010). The role of the environment transforming activity of the soil fauna key species to form soil structure (in Russian). In Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 40−48). Moscow: KMK Scientific Press Ltd.
  6. Bondar, G.A. & Zhukov A.V. (2011). Plant cover ecological structure formed as a result of self-growing of the sodlithogenic soils on loess-like clays (in Russian). Visnik of the Dnipropetrovsk State Agrarian University, 1, 54–62.
  7. Borcard, D., Legendre, P. & Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. DOI: 10.2307/1940179.10.2307/1940179
  8. Borcard, D. & Legendre P. (1994). Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1, 37–61. DOI: 10.1007/BF00714196.10.1007/BF00714196
  9. Borcard, D. & Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 51–68.10.1016/S0304-3800(01)00501-4
  10. Borcard, D., Legendre, C., Avois-Jacquet, P. & Tuosimoto H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832. DOI: 10.1890/03-3111.10.1890/03-3111
  11. Borcard, D., Gillet, F. & Legendre P. (2011). Numerical ecology with R. New York: Springer. DOI: 10.1007/978-1-4419-7976-6.10.1007/978-1-4419-7976-6
  12. Capowiez, Y., Cadoux, S., Bouchand, P., Roger-Estrade, J., Richard, G. & Boizard H. (2009). Experimental evidence or the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem., 41(4), 711–717. DOI: 10.1016/j.soilbio.2009.01.006.10.1016/j.soilbio.2009.01.006
  13. Clemens, J., Schillinger, M.P., Golodbach, H. & Huwe B. (1999). Spatial variability of N2O emissions and soil parameters of an arable silt loam – a field study. Biol. Fertil. Soils, 28(4), 403−406. DOI: 10.1007/s003740050512.10.1007/s003740050512
  14. Cronbach, L.J. & Gleser G. (1953). Assessing similarity between profiles. Psychological Bulletin, (50), 456–473. DOI: 10.1037/h0057173.10.1037/h0057173
  15. Didukh, Ya.P., (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kiev: Phytosociocentre.
  16. Didukh, Ya.P., (2012). The principles of the bioindication (in Ukranian). Kiev: Naukova dumka.
  17. Didukh, Ya.P. & Plyuta P.G. (1994). Comparative characteristic of the phytoindicator scales (termoregime and edaphic scales as examples) (in Russian). Russian Journal of Ecology, 2, 34–43.
  18. Dray, S., Legendre, P. & Peres-Neto P. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model., 196, 483–493. DOI: 10.1016/j.ecolmodel.2006.02.015.10.1016/j.ecolmodel.2006.02.015
  19. Ertsen, A.C.D., Alkemade, J.R.M. & Wassen M.J. (1998). Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecol., 135, 113−124. DOI: 10.1023/A:1009765529310.10.1023/A:1009765529310
  20. Gao, M., He, P., Zhang, X., Liu, D. & Wu D. (2014). Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biol. Biochem., 79, 68–77. DOI: 10.1016/j.soilbio.2014.09.003.10.1016/j.soilbio.2014.09.003
  21. Godefroid, S. & Koedam N. (2003). How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob. Ecol. Biogeogr., 12, 287–298. DOI: 10.1046/j.1466-822X.2003.00035.x.10.1046/j.1466-822X.2003.00035.x
  22. Godefroid, S. & Koedam N. (2004). Interspecific variation in soil compaction sensitivity among forest floor species. Biol. Conserv., 119, 207–217.10.1016/j.biocon.2003.11.009
  23. Goncalves, A.C.A., Folegatti, M.V. & Silva A.P. (1999). Estabilidade temporal da especial da umidade do solo em area irrigate por vivo central. Revista Brasileira de Ciencia do Solo, 23 (1), 155–164.10.1590/S0100-06831999000100019
  24. Grunwald, S., McSweeney, K., Rooney, D.J. & Lowery B. (2001). Soil layer models created with profile cone penetrometer data. Geoderma, 1103(1–2), 181–201. DOI: 10.1016/S0016-7061(01)00076-3.10.1016/S0016-7061(01)00076-3
  25. Grzesiak, S., Grzesiak, M.T., Felek, W., Hura, T. & Stabryla J. (2002). The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiol. Plant., 24, 331–342. DOI: 10.1007/s11738-002-0059-8.10.1007/s11738-002-0059-8
  26. Hamza, M.A. & Anderson W.K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res., 82(2), 121–145. DOI: 10.1016/j.still.2004.08.009.10.1016/j.still.2004.08.009
  27. Horsák, M., Hájek M., Tichý L. & Juřičková L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecol., 32(2), 161–171. DOI: 10.1016/j.still.2004.08.009.10.1016/j.still.2004.08.009
  28. Jiménez Juan, J., Decaëns, T., Lavelle, P. & Rossi J. (2014). Dissecting the multi-scale spatial relationship of earth-worm assemblages with soil environmental variability. BMC Ecol., 14, 26–45. DOI: 10.1186/s12898-014-0026-4.10.1186/s12898-014-0026-4
  29. Jongman, R.H.G., ter Braak, C.J.F. & Tongeren O.F.R. (1987). Data analyses in community and landscape ecology. Wageningen: Pudoc.
  30. Karpachevskij, L.O., Zubkova, T.A., Tashninova, L.N. & Rudenko R.N. (2007). Soil cover and forest biogeoceonosis parcelar structure (in Russian). Russian Forest Sciences, 6, 107−113.
  31. Kozlowski, T.T. (1999). Soil compaction and growth of woody plants. Scand. J. For. Res., 14, 596–619. DOI: 10.1080/02827589908540825.10.1080/02827589908540825
  32. Langmaack, M., Schrader, S., Rapp-Bernhardt, U. & Kotzke K. (2002). Soil structure rehabilitation of arable soil degraded by compaction. Geoderma, 105, 141–152. DOI: 10.1016/S0016-7061(01)00097-0.10.1016/S0016-7061(01)00097-0
  33. Legendre, P., Gallagher E.D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.10.1007/s00442010071628547606
  34. Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.-F. & He F. (2009). Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90, 663–674. DOI: 10.1890/07-1880.1.10.1890/07-1880.119341137
  35. Lukina, N.V. & Nikonov V.V. (1996). Biogeochemical cycles in North forest in aerotechnogenic contamination (in Russian). Apatity: Izd-vo Kol’skogo NC RAN.
  36. Lukina, N.V. & Nikonov V.V. (1998). Nutrient regime of the north taiga forests: natural and technogenic aspects (in Russian). Apatity: Izdatel’stvo Kol’skogo NC RAN.
  37. Lukina, N.V., Gorbacheva, T.T., Nikonov, V.V. & Lukina M.A. (2002). Spatial variability of the Al-Fe-podzol acidity (in Russian). Eurasian Soil Science, 35(2), 163–176.
  38. Lukina, N.V., Nikonov, V.V. & Isaeva L.G. (2006). Acidity and nutrient regime of the spruce forest soils (in Russian). In Indigenous spruce forests: biodiversity, structure, function (pp. 215−253). Nauka.
  39. Matveev, N.M. (2003). The system of the A.L. Belgard ecomorphes optimization for the sake of the ecotope and biotope phytoindication (in Russian). Visnyk Dnipropetrovsk University. Biology, ecology, 11(2), 105–113.
  40. Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.
  41. Medina, C., Camacho-Tamayo, J.H. & Cortes C.A. (2012). Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agrícola, 32(1), 91–101. DOI: 10.1590/S0100-69162012000100010.10.1590/S0100-69162012000100010
  42. Medvedev, V.V. (2009). Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science, 42(3), 299–309. DOI: 10.1134/S1064229309030077.10.1134/S1064229309030077
  43. Medvedev, V.V. & Mel’nik, A.I. (2010). Heterogeneity of soil agrochemical properties in the space and the time (in Russian). Agricultural Chemistry, 1, 20–26.
  44. Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 67, 1167–1179. DOI: 10.1007/BF00038690.10.1007/BF00038690
  45. Montagu, K.D., Conroy, J.P. & Atwell B.J. (2001). The position of localized soil compaction determines root and subsequent shoot growth responses. J. Exp. Bot., 52, 2127–2133. DOI: 10.1093/jexbot/52.364.2127.10.1093/jexbot/52.364.212711604451
  46. Moiseev, K.G. (2013). Calculating the density of loamy sandy soddy-podzolic soils from penetration resistance diagrams. Eurasian Soil Science, 46(10), 1026–1031. DOI: 10.1134/S1064229313100050.10.1134/S1064229313100050
  47. Novakovsky, A.B. (2008). Ordination methods in the modern geobotanics (in Russian). Bulletin of the Biology Institute. Komy SC UrD RAS, 132(10), 2–8.
  48. Oksanen, J., Kindt, R., Legendre, P. & O’Hara R.B. (2007) Vegan: community ecology package version 1.8–5. http://cc.oulu.fi/~jarioksa/
  49. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P. et al. (2011). Community ecology package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan.
  50. Orlova, M.A., Lukina, N.V. & Nikonov, V.V. (2003). Spruce influence on the spatial variability north taiga forests soils acidity (in Russian). Russian Forest Sciences, 6, 3–11.
  51. Paračková, A. & Zaujec A. (2001). Evaluation of human impacts on soils on the Borská nížina lowland. Ekológia (Bratislava), 20(Suppl.3), 299–304.
  52. Peres-Neto, P.R., Legendre, P., Dray, S. & Borcard D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614−2625. DOI: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.
  53. Prentice, I.C. (1977). Non-metric ordination methods in ecology. J. Ecol., 65, 85–94. DOI: 10.2307/2259064.10.2307/2259064
  54. Ramenskij, L.G., Cacenkin, I.A., Chizhikov, O.N. & Antipov N.A. (1956). Grasslands ecological assessment on the basis of the plant cover (in Russian). Moscow: Sel’hozgiz.
  55. Ramires-Lopez, L. Reina-Sanchez, A. & Camacho-Tamayo J.H. (2008). Variabilidad espacial de atributos fisicos de un Typic Haplustox de los Llanos Orientales de Colombia. Engenharia Agrícola, 28(1), 55–63. DOI: 10.1590/S0100-69162008000100006.10.1590/S0100-69162008000100006
  56. Rosolem, C.A., Foloni, J.S.S. & Tiritan C.S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res., 65, 109–115. DOI: 10.1016/S0167-1987(01)00286-0.10.1016/S0167-1987(01)00286-0
  57. Samsonova, V.P. (2008). Spatial variability of the soil properties: sod-podzol soils as example (in Russian). Moscow: Izdatel’stvo LKI.
  58. Schaffers, A.P. & Sykora K.V. (2000). Reliability o f Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci., 11, 225–244. DOI: 10.2307/3236802.10.2307/3236802
  59. Schenková, V., Horsák, M., Plesková, Z. & Pawlikowski P. (2012). Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. J. Molluscan Stud., 78(1), 105–111. DOI: 10.1093/mollus/eyr046.10.1093/mollus/eyr046
  60. Selles, F., Campbell, C.A., McConkey, B.G., Brandt, S.A. & Messer D. (1999). Relationships between biological and chemical measures of N supplying power and total N at field scale. Can.. J. Soil Sci., 79, 353–366. DOI: 10.4141/S98-035.10.4141/S98-035
  61. Serafim, M.E., Vitorino, A.C.T., Peixoto, P.P.P., Souza, C.M.A. & Carvalho D.F. (2008). Intervalo hidrico otimo em um latossolo vermelho distroferrico sob diferentes sistemas de producao. Engenharia Agrícola, 28(4), 654–665. DOI: 10.1590/S0100-69162008000400005.10.1590/S0100-69162008000400005
  62. Shein, E.V. (2001). Spatial heterogeneity of the properties on the different hierarchical levels is a basis of the soils structure and functions (in Russian). In Scales effects following soils invesigation. Moscow: MGU.
  63. Shitikov, V.K., Rozenberg, G.S. & Zinchenko T.D. (2003). Quantitative hydro ecology: system identification methods (in Russian). Tol’jatti: IJeVB RAN.
  64. Soracco, C.G., Lozano, L.A., Sarli, G.O., Gelati, P.R. & Filgueira R.R. (2010). Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil Tillage Res., 109, 18–22. DOI: 10.1016/j.still.2010.03.013.10.1016/j.still.2010.03.013
  65. Startsev, A.D. & McNabb D.H. (2000). Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. Soil Sci., 80, 617–624. DOI: 10.4141/S99-092.10.4141/S99-092
  66. Tarasov, V.V. (2012). Flora of the Dnipropetrovsk and Zaporizhia regions (in Ukrainian). Dnipropetrovs’k: Lira.
  67. Tolstova, Ju.N. (2006). Multidimensional scales basis (in Russian). Moscow: KDU.
  68. Tryfanova, M., Zadorojhna, G. & Zhukova J. (2014). Gray heron colony impact on soil cellulolytic activity (in Ukrainian). Visnyk of L’viv University. Seria Biologia, 65, 245–254.
  69. Wright, S. A. (1988). Axis and Circumference. Cambridge: Harvard University Press.10.4159/harvard.9780674436961
  70. Zadorozhnaya, G.A. (2012). The spatial organization of soddy lithogenic soils on the grey-grin clays (in Ukrainian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 2 (1), 48–57. DOI: 10.15421/20133_03.10.15421/20133_03
  71. Zagulnova, L.B., Byhovec, S.S., Barinov, O.G. & Barinova M.A. (1998). Habitat scores verifications according to some environmental parameters (in Russian). Russian Forest Sciences, 5, 48–58.
  72. Zagulnova, L.B., Lukina, N.V. & Tihonova E.V. (2010). Spatial structure of the biogeocoenotic forest cover (in Russian). In Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 10−19). Moscow: KMK Scientific Press Ltd.
  73. Zagulnova, L.B. & Tihonova E.V. (2010) Phytoindication of the ecological regimes in small basin (in Russian). Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 156−158). Moscow: KMK Scientific Press Ltd.
  74. Zhukov, A.V. (2015). Influence of usual and dual wheels on soil penetration resistance: the GIS-appoach (in Russian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 5(3), 73–100. DOI: 10.15421/2015029.10.15421/2015029
  75. Zhukov, A.V. & Zadorozhnaya G.A. (2015). Ecomorphic organisation of the soil body: geostatistical approach (in Ukrainian). Studia Biologica, 9(3–4), 119–128.10.30970/sbi.0903.423
DOI: https://doi.org/10.1515/eko-2016-0021 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 263 - 278
Published on: Sep 29, 2016
Published by: Institute of Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Alexander Zhukov, Galina Gadorozhnaya, published by Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.