Have a personal or library account? Click to login
Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook Cover

Adsorption of Malachite Green and Congo Red Dyes from Water: Recent Progress and Future Outlook

Open Access
|Apr 2019

References

  1. [1] Gautam D, Kumari S, Ram B, Chauhan GS, Chauhan K. A new hemicellulose-based adsorbent for malachite green. J Chem Eng. 2018;6(4):3889-3897. DOI:10.1016/j.jece.2018.05.029.10.1016/j.jece.2018.05.029
  2. [2] Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem. 2017;10(2):S3229-S3238. DOI: 10.1016/j.arabjc.2013.12.019.10.1016/j.arabjc.2013.12.019
  3. [3] Wang D, Liu L, Jiang X, Yu J, Chen X. Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf A Physicochem Eng Asp. 2015;466:166-173. DOI: 10.1016/j.colsurfa.2014.11.021.10.1016/j.colsurfa.2014.11.021
  4. [4] Naseem K, Farooqi ZH, Begum R, Irfan A. Removal of congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J Clean Prod. 2018:187:296-307. DOI: 10.1016/j.jclepro.2018.03.209.10.1016/j.jclepro.2018.03.209
  5. [5] Alver E, Bulut M, Metin AU, Çiftçi H. One step effective removal of congo red in chitosan nanoparticles by encapsulation. Spectrochim Acta A Mol Biomol Spectrosc. 2017;171:132-138. DOI: 10.1016/j.saa.2016.07.046.10.1016/j.saa.2016.07.04627501485
  6. [6] Tu NT, Thien TV, Du PD, Chau VT, Mau TX, Khieu DQ. Adsorptive removal of congo red from aqueous solution using zeolitic imidazolate framework-67. J Environ Chem Eng. 2018;6(2):2269-2280. DOI: 10.1016/j.jece.2018.03.031.10.1016/j.jece.2018.03.031
  7. [7] Ausavasukhi A, Kampoosaen C, Kengnok O. Adsorption characteristics of congo red on carbonized leonardite. J Clean Prod. 2016;134:506-514. DOI: 10.1016/j.jclepro.2015.10.034.10.1016/j.jclepro.2015.10.034
  8. [8] Zhang X, Lin Q, Luo S, Ruan K, Peng K. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Appl Surf Sci. 2018;442:322-331. DOI: 10.1016/j.apsusc.2018.02.148.10.1016/j.apsusc.2018.02.148
  9. [9] Gupta K, Khatri OP. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. J Colloid Interface Sci. 2017;501:11-21. DOI: 10.1016/j.jcis.2017.04.035.10.1016/j.jcis.2017.04.03528431217
  10. [10] Tang S, Zaini MAA. Congo red Removal by HNO3-modified resorcinol-formaldehyde carbon gels. Chem Eng Trans. 2017;56:159-172. DOI: 10.3303/CET1756140.
  11. [11] Leyva-Ramos R. Effect of temperature and pH on the adsorption of an anionic detergent on activated carbon. J Chem Technol Biotechnol. 1989;45(3):231-240. DOI: 10.1002/jctb.280450308.10.1002/jctb.280450308
  12. [12] Nouri S. Effect of treatment on the adsorption capacity of activated carbon. Adsorpt Sci Technol. 2002;20(9):917-925. DOI: 10.1260/026361703771953578.10.1260/026361703771953578
  13. [13] Rajabi M, Mirza B, Mahanpoor K, Mirjalili M, Najafi F, Moradi O, et al. Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J Ind Eng Chem. 2016;34:130-138. DOI: 10.1016/j.jiec.2015.11.001.10.1016/j.jiec.2015.11.001
  14. [14] Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicon Process. 2016;41:67-82. DOI: 10.1016/j.mssp.2015.08.013.10.1016/j.mssp.2015.08.013
  15. [15] Tang S, Zaini MAA. Malachite green adsorption by potassium salts-activated carbons derived from textile sludge: Equilibrium, kinetics and thermodynamics studies. Asia-Pac J Chem Eng. 2016;12(1):159-172. DOI: 10.1002/apj.2063.10.1002/apj.2063
  16. [16] Vergis BR, Krishna RH, Kottam N, Nagabhushana BM, Sharath R, Darukaprasad B. Removal of malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one pot solution combustion method. J Nanostructure Chem. 2017;8(1):1-12. DOI: 10.1007/s40097-017-0249-y.10.1007/s40097-017-0249-y
  17. [17] Hosseinzadeh H, Ramin S. Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int J Biol Macromol. 2018;106:101-115. DOI: 10.1016/j.ijbiomac.2017.07.182.10.1016/j.ijbiomac.2017.07.18228778526
  18. [18] Dash S, Chaudhuri H, Gupta R, Nair UG. Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: Kinetics and thermodynamics. J Environ Chem Eng. 2018;6(5):5897-5905. DOI: 10.1016/j.jece.2018.05.017.10.1016/j.jece.2018.05.017
  19. [19] Abdelrahman EA. Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J Mol Liq. 2018;253:72-82. DOI: 10.1016/j.molliq.2018.01.038.10.1016/j.molliq.2018.01.038
  20. [20] Altıntıg E, Onaran M, Sarı A, Altundag H, Tüzen M. Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater Chem Phys. 2018;220:313-321. DOI: 10.1016/j.matchemphys.2018.05.077.10.1016/j.matchemphys.2018.05.077
  21. [21] Baghdadi M, Soltani BA, Nourani M. Malachite green removal from aqueous solutions using fibrous cellulose sulfate prepared from medical cotton waste: Comprehensive batch and column studies. J Ind Eng Chem. 2017;55:128-139. DOI: 10.1016/j.jiec.2017.06.037.10.1016/j.jiec.2017.06.037
  22. [22] Ghasemi M, Mashhadi S, Asif M, Tyagi I, Agarwal S, Gupta VK. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for malachite green dye. J Mol Liq. 2016;213:317-325. DOI: 10.1016/j.molliq.2015.09.048.10.1016/j.molliq.2015.09.048
  23. [23] Tang Y, Zeng Y, Hu T, Zhou Q, Peng Y. Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. J Environ Chem Eng. 2016;4(3):2900-2910. DOI: 10.1016/j.jece.2016.05.040.10.1016/j.jece.2016.05.040
  24. [24] Nekouei F, Kargarzadeh H, Nekouei S, Tyagi I, Agarwal S, Gupta VK. Preparation of nickel hydroxide nanoplates modified activated carbon for malachite green removal from solutions: Kinetic, thermodynamic, isotherm and antibacterial studies. Process Saf Environ. 2016;102:85-97. DOI: 10.1016/j.psep.2016.02.011.10.1016/j.psep.2016.02.011
  25. [25] Ghaedi M, Azad FN, Dashtian K, Hajati S, Goudarzi A, Soylak M. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO nanorod-loaded activated carbon. Spectrochim Acta A Mol Biomol Spectrosc. 2016;167:157-164. DOI: 10.1016/j.saa.2016.05.025.10.1016/j.saa.2016.05.02527318150
  26. [26] Ghaedi M, Shojaeipour E, Ghaedi A, Sahraei R. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:135-149. DOI: 10.1016/j.saa.2015.01.086.10.1016/j.saa.2015.01.08625699703
  27. [27] Kan Y, Yue Q, Kong J, Gao B, Li Q. The application of activated carbon produced from waste printed circuit boards (PCBs) by H3PO4 and steam activation for the removal of malachite green. Chem Eng J. 2015;260:541-549. DOI: 10.1016/j.cej.2014.09.047.10.1016/j.cej.2014.09.047
  28. [28] Shi Z, Xu C, Guan H, Li L, Fan L, Wang Y, et al. Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf A Physicochem Eng Asp. 2018;539:382-390. DOI: 10.1016/j.colsurfa.2017.12.043.10.1016/j.colsurfa.2017.12.043
  29. [29] Zhou Y, Ge L, Fan N, Xia M. Adsorption of Congo red from aqueous solution onto shrimp shell powder. Adsorpt Sci Technol. 2018;36(5-6):1310-1330 DOI: 10.1177/0263617418768945.10.1177/0263617418768945
  30. [30] Yang G, Wu L, Xian Q, Shen F, Wu J, Zhang Y. Removal of congo red and methylene blue from aqueous solutions by vermicompost-derived biochars. Plos One. 2016;11(5):e0154562. DOI: 10.1371/journal.pone.0154562.10.1371/journal.pone.0154562485639327144922
  31. [31] Chawla S, Uppal H, Yadav M, Bahadur N, Singh N. Zinc peroxide nanomaterial as an adsorbent for removal of congo red dye from waste water. Ecotoxicol Environ Saf. 2017;135:68-74. DOI: 10.1016/j.ecoenv.2016.09.017.10.1016/j.ecoenv.2016.09.01727693679
  32. [32] Saksornchai E, Kavinchan J, Thongtem S, Thongtem T. Simple wet-chemical synthesis of superparamagnetic CTAB-modified magnetite nanoparticles using as adsorbents for anionic dye Congo red removal. Mater Lett. 2018;213:138-142. DOI: 10.1016/j.matlet.2017.11.015.10.1016/j.matlet.2017.11.015
  33. [33] Sun P, Chen L, Xu L, Zhu W. Hierarchical porous MgBO 2 (OH) microspheres: Hydrothermal synthesis, thermal decomposition, and application as adsorbents for congo red removal. Chin J Chem Eng. 2018;26(7):1561-1569. DOI: 10.1016/j.cjche.2018.01.013.10.1016/j.cjche.2018.01.013
  34. [34] Shojaeipoor F, Elhamifar D, Masoumi B, Elhamifar D, Barazesh B. Ionic liquid based nanoporous organosilica supported propylamine as highly efficient adsorbent for removal of congo red from aqueous solution. Arab J Chem. 2016. DOI: 10.1016/j.arabjc.2016.05.001.10.1016/j.arabjc.2016.05.001
  35. [35] Xu J, Xu D, Zhu B, Cheng B, Jiang C. Adsorptive removal of an anionic dye congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl Surf Sci. 2018;435:1136-1142. DOI: 10.1016/j.apsusc.2017.11.232.10.1016/j.apsusc.2017.11.232
  36. [36] Chaukura N, Mamba BB, Mishra SB. Conversion of post-consumer waste polystyrene into a high value adsorbent and its sorptive properties for congo red removal from aqueous solution. J Environ Manage. 2017;193:280-289. DOI: 10.1016/j.jenvman.2017.02.023.10.1016/j.jenvman.2017.02.02328232242
  37. [37] Shaban M, Abukhadra MR, Khan AAP, Jibali BM. Removal of congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J Taiwan Inst Chem Eng. 2018;82:102-116. DOI: /10.1016/j.jtice.2017.10.023.10.1016/j.jtice.2017.10.023
  38. [38] Tian C, Feng C, Wei M, Wu Y. Enhanced adsorption of anionic toxic contaminant congo red by activated carbon with electropositive amine modification. Chemosphere. 2018;208:476-483. DOI: 10.1016/j.chemosphere.2018.06.005.10.1016/j.chemosphere.2018.06.00529886336
  39. [39] Srilakshmi C, Saraf R. Ag-doped hydroxyapatite as efficient adsorbent for removal of congo red dye from aqueous solution: Synthesis, kinetic and equilibrium adsorption isotherm analysis. Micropor Mesopor Mat. 219 (2016), 134-144. DOI: 10.1016/j.micromeso.2015.08.003.10.1016/j.micromeso.2015.08.003
  40. [40] Bharali D, Deka RC. Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. J Environ Chem Eng. 2017;5(2):2056-2067. DOI: 10.1016/j.jece.2017.04.012.10.1016/j.jece.2017.04.012
  41. [41] Yang M, Wu Y, Rao R, Wang H. Methanol promoted synthesis of porous hierarchical α-Ni(OH)2 for the removal of congo red. Powder Technol. 2017;320:377-385. DOI: 10.1016/j.powtec.2017.07.074.10.1016/j.powtec.2017.07.074
  42. [42] Long Y, Yu J, Jiao F, Yang W. Preparation and characterization of MWCNTs/LDHs nanohybrids for removal of congo red from aqueous solution. Trans Nonferrous Met Soc China. 2016;26(10):2701-2710. DOI: 10.1016/s1003-6326(16)64398-4.10.1016/S1003-6326(16)64398-4
  43. [43] Zheng Y, Zhu B, Chen H, You W, Jiang C, Yu J. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of congo red in water. J Colloid Interface Sci. 2017;504:688-696. DOI: 10.1016/j.jcis.2017.06.014.10.1016/j.jcis.2017.06.01428622562
  44. [44] Zhang Y, Bai L, Zhou W, Lu R, Gao H, Zhang S. Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. J Mol Liq. 2016;219:88-94. DOI: 10.1016/j.molliq.2016.02.096.10.1016/j.molliq.2016.02.096
  45. [45] Lei C, Pi M, Zhou W, Guo Y, Zhang F, Qin J. Synthesis of hierarchical porous flower-like ZnO-AlOOH structures and their applications in adsorption of congo red. Chem Phys Lett. 2017;687:143-151. DOI: 10.1016/j.cplett.2017.09.018.10.1016/j.cplett.2017.09.018
  46. [46] Satheesh R, Vignesh K, Rajarajan M, Suganthi A, Sreekantan S, Kang M, et al. Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater Chem Phys. 2016;180:53-65. DOI: 10.1016/j.matchemphys.2016.05.029.10.1016/j.matchemphys.2016.05.029
  47. [47] Tran HN, You SJ, Nguyen TV, Chao HP. Insight into adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem Eng Commun. 2017;204(9):1020-1036. DOI: 10.1080/00986445.2017.1336090.10.1080/00986445.2017.1336090
  48. [48] Raval NP, Shah PU, Shah NK. Adsorptive amputation of hazardous azo dye congo red from wastewater: A critical review. Environ Sci Pollut Res. 2016;23:14810-14853. DOI: 10.1007/s11356-016-6970-0.10.1007/s11356-016-6970-027255316
  49. [49] Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci. 2017;7:3407-3445. DOI: 10.1007/s13201-016-0512-2.10.1007/s13201-016-0512-2
  50. [50] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007
  51. [51] Zaini MAA, Alias N, Yunus MAC. Bio-polishing sludge adsorbents for dye removal. Polish J Chem Technol. 2016;18 4):15-21. DOI: 10.1515/pjct-2016-0065.10.1515/pjct-2016-0065
  52. [52] Zaini MAA, Zakaria M, Setapar SHM, Yunus MAC. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J Environ Chem Eng. 2013;1:1091-1098. DOI: 10.1016/j.jece.2013.08.026.10.1016/j.jece.2013.08.026
DOI: https://doi.org/10.1515/eces-2019-0009 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 119 - 132
Published on: Apr 15, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ng Boon Swan, Muhammad Abbas Ahmad Zaini, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.