Have a personal or library account? Click to login
The Impact of Copper Ions on Oxidative Stress in Garden Cress Lepidium sativum Cover

The Impact of Copper Ions on Oxidative Stress in Garden Cress Lepidium sativum

Open Access
|Jan 2018

References

  1. [1] Pasternak T, Potters G, Caubergs R, Jansen MAK, Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ and cellular level. J Exp Bot. 2005;56:1991-2001. DOI: 10.1093/jxb/eri196.10.1093/jxb/eri196
  2. [2] Raldugina GN, Krasavina MS, Lunkova NF, Burmistrova NA. Resistance of plants to Cu stress: transgenesis. In: Ahmad P, editor. Plant Metal Interaction. Emerging Remediation Techniques. Elsevier. 2016:69-114. DOI: 10.1016/B978-0-12-803158-2.00004-7.10.1016/B978-0-12-803158-2.00004-7
  3. [3] Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18:321-336. DOI: 10.1016/0891-5849(94)00159-H.10.1016/0891-5849(94)00159-
  4. [4] Doğanlar ZB, Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chem Speciat Bioavialabil. 2013;15:79-88. DOI: 10.3184/095422913X13706128469701.10.3184/095422913X13706128469701
  5. [5] Indumathy R, Aruna A. Free radical scavenging activities, total phenolic and flavonoid content of Lepidium sativum (Linn.). Int J Pharm Pharm Sci. 2013;5:634-637. https://www.researchgate.net/publication/288293438_Free_radical_scavenging_activities_total_phenolic_and_flavonoid_content_of_Lepidium_sativum_Linn.
  6. [6] Zia-Ul-Haq M, Ahmad S, Calani L, Mazzeo T, Del Rio D, Pellegrini N, et al. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules. 2012;17:10306-10321. DOI: 10.3390/molecules170910306.10.3390/170910306
  7. [7] Zaharieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in ascorbate contetnt and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999;40:273-280.10.1093/oxfordjournals.pcp.a029538
  8. [8] Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275. http://www.jbc.org/content/193/1/265.long.10.1016/S0021-9258(19)52451-6
  9. [9] Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. DOI: 10.1016/0003-9861(68)90654-1.10.1016/0003-9861(68)90654-1
  10. [10] Ibrahim MM, Bafeel SO. Alteration of gene expression, superoxide anion radical and lipid peroxidation induces by lead toxicity in leaves of Lepidium sativum. J Anim Plant Sci. 2009;4:281-288. http://www.m.elewa.org/JAPS/2009/4.1/6.pdf.
  11. [11] Rajfur M, Krems P, Kłos A, Kozłowski R, Jóźwiak MA, Kříž J, et al. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie Province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.10.1515/eces-2016-0016
  12. [12] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.
  13. [13] Lu Y, Li XR, He MZ, Wang ZN, Tan HJ. Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim. Sci Cold Arid Regions. 2010;2:436-444. DOI: 10.3724/SP.J.1226.2010.00436.10.3724/SP.J.1226.2010.00436
  14. [14] Keser G. Effects of irrigation with wastewater on the physiological properties and heavy metal content in Lepidium sativum L. and Eruca sativa (Mill.). Environ Monit Assess. 2013;185:6209-6217. DOI: 10.1007/s10661-012-3018-x.10.1007/s10661-012-3018-x23269485
  15. [15] Upadhyay RK, Panda SK. Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown warer lettuce (Pistia stratiotes L.). Comptes Rendus Biol. 2009;332:623-632. DOI: 10.1016/j.crvi.2009.03.001.10.1016/j.crvi.2009.03.00119523602
  16. [16] Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol. 2009;91:1-9. DOI: 10.1016/j.aquatox.2008.09.009.10.1016/j.aquatox.2008.09.00919027182
  17. [17] Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f) Royale. Aquatic Toxicol. 2006:80:405-415. DOI: 10.1016/j.aquatox.2006.10.006.10.1016/j.aquatox.2006.10.00617113658
  18. [18] Rolli NM, Suvarnaknandi SS, Mulgund GS, Ratageri RH, Taranath TC. Biochemical responses and accumulation of cadmium in Spirodela polyrhiza. J Environ Biol. 2010;31:529-532. http://www.jeb.co.in/journal_issues/201007_jul10/paper_23.pdf.
  19. [19] Cuypers A, Koistnen KM, Kokko H, Kärenlampi S, Auriola S, Vangronsveld J. Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. J Plant Physiol. 2005:162:383-392. DOI: 10.1016/j.jplph.2004.07.018.10.1016/j.jplph.2004.07.01815900880
  20. [20] Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by Coontail (Ceratophyllum dermersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 2006:65:1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.10.1016/j.chemosphere.2006.03.03316682069
  21. [21] Blokhina O, Virolainen E, Fagerstedt KV, Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annal Botany. 2003;91:179-194. DOI: 10.1093/aob/mcf118.10.1093/aob/mcf118424498812509339
  22. [22] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry. 2004;65(13):1879-1893. DOI: 10.1016/j.phytochem.2004.06.023.10.1016/j.phytochem.2004.06.02315279994
  23. [23] Singh S, Singh S, Ramachandran V, Eapen S. Copper tolerance and response of antioxidative enzymes in axenically grown Brassica juncea (L.) plants. Ecotoxicol Environ Safety. 2010;73:1975-1981. DOI: 10.1016/j.ecoenv.2010.08.020.10.1016/j.ecoenv.2010.08.02020825988
  24. [24] Mourato MP, Martins LL, Camposa-Andrada MP. Physiological responses of Lupinus luteus to different copper concentrations. Biol Plantarium. 2009;53:105-111. https://link.springer.com/content/pdf/10.1007%2Fs10535-009-0014-2.pdf.10.1007/s10535-009-0014-2
  25. [25] Cuypers A, Vangronsveld J, Clijsters H. Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol. 2002;159:869-876. DOI: 10.1078/0176-1617-00676.10.1078/0176-1617-00676
  26. [26] Karimi P, Khavari-Nejad RA, Niknam V, Ghahremaninejad F, Najafi F. The effects of excess copper on antioxidative enzymes, lipid peroxidation, proline, chlorophyll, and concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii. Sci World J. 2012;2012:1-6. DOI: 10.1100/2012/615670.10.1100/2012/615670350708123213292
  27. [27] Meng Q, Zou J, Zou J, Jiang W, Liu D. Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehide content in garlic (Allium sativum L.). Acta Biol Cracoviensia Series Botan. 2007;49(1):95-101. http://www2.ib.uj.edu.pl/abc/pdf/49_1/12meng.pdf.
  28. [28] Morales JML, Rodriguez-Monroy M, Sepúlveda-Jiménez G. Betacyanin accumulation and guaiacol peroxidase activity in Beta vulgaris L. leaves following copper stress. Acta Soc Bot Pol. 2012;81:193-201. DOI: 10.5586/asbp.2012.019.10.5586/asbp.2012.019
  29. [29] Hu C, Zhang L, Hamilton D, Zhou W, Yang T, Zhu D. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia. 2007;579:211-218. DOI: 10.1007/s10750-006-0404-9.10.1007/s10750-006-0404-9
  30. [30] Monferrán MV, Sánchez Agudo JA, Pignata ML, Wunderlin DA. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut. 2009;157:2550-2576. DOI: 10.1016/j.envpol.2009.02.034.10.1016/j.envpol.2009.02.03419324479
  31. [31] Fidalgo R, Azenha M, Silve AF, de Sousan A, Santiago A, Ferraz P, et al. Copper-induced in Solanum nigrum L. and antioxidant defense system responses. Food Energy Security. 2013;2:70-80. DOI: 10.1002/fes3.20.10.1002/fes3.20
  32. [32] Hejazi-Mehrizi M, Shariatmadari H, Khoshgoftarmanesh AH, Dehghani F. Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. J Agr Sci Technol. 2012;14(1):205-212. https://www.researchgate.net/publication/260423986_Copper_Effects_on_Growth_Lipid_Peroxidation_and_Total_Phenolic_Content_of_Rosemary_Leaves_under_Salinity_Stress.
  33. [33] Seliga H. Antioxidative activity of copper in root nodules of yellow lupin plants. Acta Physiol Plant. 1999;21:427-431.10.1007/s11738-999-0016-x
  34. [34] Szczodrowska A, Kulbat K, Smolińska B, Leszczyńska J. Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnol Food Sci. 2016;80:29-42. http://www.bfs.p.lodz.pl.
DOI: https://doi.org/10.1515/eces-2017-0041 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 627 - 636
Published on: Jan 19, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Agnieszka Rombel-Bryzek, Małgorzata Rajfur, Olga Zhuk, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.