Have a personal or library account? Click to login
Estimating Root Zone Moisture from Surface Soil Using Limited Data Cover

Estimating Root Zone Moisture from Surface Soil Using Limited Data

Open Access
|Jan 2018

References

  1. [1] Callaghan MV, Head FA, Cey EE, Bentley LR. Salt leaching in fine-grained, macroporous soil: Negative effects of excessive matrix saturation. Agricult Water Manage. 2017;181:73-84. DOI: 10.1016/j.agwat.2016.11.025.10.1016/j.agwat.2016.11.025
  2. [2] He K, Yang Y, Yang Y, Chen S, Hu Q, Liu X, et al. Hydrus simulation of sustainable brackish water irrigation in a winter wheat-summer maize rotation system in the north china plain. Water. 2017;9(7):536. DOI: 10.3390/w9070536.10.3390/w9070536
  3. [3] Trujillo-González J, Mahecha-Pulido J, Torres-Mora M, Brevik E, Keesstra S, Jiménez-Ballesta R. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture. 2017;7(7):52. DOI: 10.3390/agriculture7070052.10.3390/7070052
  4. [4] Li Y, Šimůnek J, Wang S, Yuan J, Zhang W. Modeling of soil water regime and water balance in a transplanted rice field experiment with reduced irrigation. Water. 2017;9(4):248. DOI: 10.3390/w9040248.10.3390/w9040248
  5. [5] García-Garizábal I, Causapé J, Merchán D. Evaluation of alternatives for flood irrigation and water usage in spain under mediterranean climate. CATENA. 2017;155:127-134. DOI: 10.1016/j.catena.2017.02.019.10.1016/j.catena.2017.02.019
  6. [6] Jalali V, Asadi Kapourchal S, Homaee M. Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricult Water Manage. 2017;180:13-21. DOI: 10.1016/j.agwat.2016.10.015.10.1016/j.agwat.2016.10.015
  7. [7] Hassan-Esfahani L, Torres-Rua A, Jensen A, Mckee M. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high-resolution visual, nir, and thermal imagery. Irrigation Drainage. 2017;66(2):273-288. DOI: 10.1002/ird.2098.10.1002/ird.2098
  8. [8] Veihmeyer FJ, Hendrickson AH. The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 1931;32(3):181-194. DOI: 10.1097/00010694-193109000-00003.10.1097/00010694-193109000-00003
  9. [9] Shepherd KD, Walsh MG. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J. 2002;66(3):988-998. DOI: DOI: 10.2136/sssaj2002.9880.10.2136/sssaj2002.9880
  10. [10] Nanni MR, Demattê JAM. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J. 2006;70:393-407. DOI: 10.2136/sssaj2003.0285.10.2136/sssaj2003.0285
  11. [11] Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, et al. An extended AVHRR 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int J Remote Sens. 2005;26(20):4485-4498. DOI: 10.1080/01431160500168686.10.1080/01431160500168686
  12. [12] Liu G, Guo H, Yan S, Song R, Ruan Z, Lv M. Revealing the surge behaviour of the yangtze river headwater glacier during 1989-2015 with tandem-x and landsat images. J Glaciology. 2017;63(238):382-386. DOI: 10.1017/jog.2017.4.10.1017/jog.2017.4
  13. [13] Shahtahmassebi AR, Lin Y, Lin L, Atkinson PM, Moore N, Wang K, et al. Reconstructing historical land cover type and complexity by synergistic use of landsat multispectral scanner and corona. Remote Sensing. 2017;9(7):682. DOI: 10.3390/rs9070682.10.3390/rs9070682
  14. [14] Yu H, Kong B, Wang G, Du R, Qie G. Prediction of soil properties using a hyperspectral remote sensing method. Archives Agronomy Soil Sci. 2017:1-14. DOI: 10.1080/03650340.2017.1359416.10.1080/03650340.2017.1359416
  15. [15] Rocha Neto O, Teixeira A, Leão R, Moreira L, Galvão L. Hyperspectral remote sensing for detecting soil salinization using prospectir-vs aerial imagery and sensor simulation. Remote Sensing. 2017;9(1):42. DOI: 10.3390/rs9010042.10.3390/rs9010042
  16. [16] Ben-Dor E, Chabrillat S, Demattê JAM, Taylor GR, Hill J, Whiting ML, et al. Using imaging spectroscopy to study soil properties. Remote Sens Environ. 2009;113:S38-S55. DOI: 10.1016/j.rse.2008.09.019.10.1016/j.rse.2008.09.019
  17. [17] Calzolari C, Ungaro F. Predicting shallow water table depth at regional scale from rainfall and soil data. J Hydrol. 2012;414:374-387. DOI: 10.1016/j.jhydrol.2011.11.008.10.1016/j.jhydrol.2011.11.008
  18. [18] Vauclin M, Vieira S, Vachaud G, Nielsen D. The use of cokriging with limited field soil observations. Soil Sci Soc Am J. 1983;47(2):175-184. DOI: 10.2136/sssaj1983.03615995004700020001x.10.2136/sssaj1983.03615995004700020001x
  19. [19] Sun RH, Liu QL, Chen LD. Study on precipitation based on the geostatistical analyst method. J China Hydrol. 2010;30(1):14-18. DOI: 10.3969/j.issn.1000-0852.2010.01.003.10.3969/j.issn.1000-0852.2010.01.003
  20. [20] Yates SR, Warrick AW. Estimating soil water content using cokriging. Soil Sci Soc Am J. 1987;51(1):23-30. DOI: 10.2136/sssaj1987.03615995005100010005x.10.2136/sssaj1987.03615995005100010005x
  21. [21] Ghadermazi J, Sayyad G, Mohammadi J, Moezzi A, Ahmadi F, Schulin R. Spatial prediction of nitrate concentration in drinking water using ph as auxiliary co-kriging variable. Procedia Environ Sci. 2011;3(0):130-135. DOI: 10.1016/j.proenv.2011.02.023.10.1016/j.proenv.2011.02.023
  22. [22] Regalado CM, Ritter A, Rodríguez-González RM. Performance of the commercial wet capacitance sensor as compared with time domain reflectometry in volcanic soils. Vadose Zone J. 2007;6(2):244-254. DOI: 10.2136/vzj2006.0138.10.2136/vzj2006.0138
  23. [23] Blonquist Jr J, Jones SB, Robinson D. A time domain transmission sensor with tdr performance characteristics. J Hydrol. 2005;314(1):235-245. DOI: 10.1016/j.jhydrol.2005.04.005.10.1016/j.jhydrol.2005.04.005
  24. [24] Manfreda S, Brocca L, Moramarco T, Melone F, Sheffield J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol Earth Syst Sci. 2014;18(3):1199-1212. DOI: 10.5194/hess-18-1199-2014.10.5194/hess-18-1199-2014
  25. [25] Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput Electron Agr. 2001;31(3):213-237. DOI: 10.1016/S0168-1699(00)00184-8.10.1016/S0168-1699(00)00184-8
  26. [26] Kilmer VJ, Alexander LT. Methods of making mechanical analyses of soils. Soil Sci. 1949;68(1):15-24. DOI: 10.1097/00010694-194907000-00003.10.1097/00010694-194907000-00003
  27. [27] Geladi P, Kowalski BR. Partial least-squares regression: A tutorial. Analytica Chim Acta. 1986;185:1-17. DOI: 10.1016/0003-2670(86)80028-9.10.1016/0003-2670(86)80028-9
  28. [28] Wold S, Ruhe A, Wold H, Dunn WJ. The collinearity problem in linear regression. The partial least squares (pls) approach to generalized inverses. SIAM J Sci Stat Computing. 1984;5(3):735-743. DOI: 10.1137/0905052.10.1137/0905052
  29. [29] Helland IS. On the structure of partial least squares regression. Communic Statistics-Simul Comput. 1988;17(2):581-607. DOI: 10.1080/03610918808812681.10.1080/03610918808812681
  30. [30] Abdi H. Partial least squares regression and projection on latent structure regression (pls regression). Wiley Interdisciplin Reviews: Computat Statistics. 2010;2(1):97-106. DOI: 10.1002/wics.51.10.1002/wics.51
  31. [31] Gomez C, Viscarra Rossel RA, Mcbratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An Australian case study. Geoderma. 2008;146(3):403-411. DOI: 10.1016/j.geoderma.2008.06.011.10.1016/j.geoderma.2008.06.011
  32. [32] Chen H, Pan T, Chen J, Lu Q. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics Intell Labor Systems. 2011;107(1):139-146. DOI: 10.1016/j.chemolab.2011.02.008.10.1016/j.chemolab.2011.02.008
  33. [33] Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sens Environ. 1998;66(1):41-51. DOI: 10.1016/S0034-4257(98)00032-7.10.1016/S0034-4257(98)00032-7
  34. [34] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892-898. DOI: 10.2136/sssaj1980.03615995004400050002x.10.2136/sssaj1980.03615995004400050002x
  35. [35] Schaap MG, Leij FJ, Van Genuchten MT. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol. 2001;251(3-4):163-176. DOI: 10.1016/s0022-1694(01)00466-8.10.1016/S0022-1694(01)00466-8
  36. [36] Hu SZ, Qiao DM, Shi HB. Analysis on root ecological and physiological characteristics of sunflower. J Arid Land Resour Environ. 2006;20(6):192-197. DOI: 10.3969/j.issn.1003-7578.2006.06.037.10.3969/j.issn.1003-7578.2006.06.037
  37. [37] Zeng W, Xu C, Wu J, Huang J, Zhao Q, Wu M. Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus l.). Pedosphere. 2014;24(5):635-644. DOI: 10.1016/S1002-0160(14)60049-7.10.1016/S1002-0160(14)60049-7
  38. [38] Holzman ME, Rivas R, Piccolo MC. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int J Appl Earth Observ Geoinformation. 2014;28:181-192. DOI: 10.1016/j.jag.2013.12.006.10.1016/j.jag.2013.12.006
  39. [39] Lobell DB, Asner GP. Moisture effects on soil reflectance. Soil Sci Soc Am J. 2002;66(3):722-727. DOI: 10.2136/sssaj2002.7220.10.2136/sssaj2002.7220
  40. [40] Morel J, Bégué A, Todoroff P, Martiné J-F, Lebourgeois V, Petit M. Coupling a sugarcane crop model with the remotely sensed time series of fipar to optimise the yield estimation. Eur J Agron. 2014;61:60-68. DOI: 10.1016/j.eja.2014.08.004.10.1016/j.eja.2014.08.004
  41. [41] Haubrock SN, Chabrillat S, Lemmnitz C, Kaufmann H. Surface soil moisture quantification models from reflectance data under field conditions. Int J Remote Sens. 2008;29(1):3-29. DOI: 10.1080/01431160701294695.10.1080/01431160701294695
  42. [42] Whiting ML, Li L, Ustin SL. Predicting water content using Gaussian model on soil spectra. Remote Sens Environ. 2004;89(4):535-552. DOI: 10.1016/j.rse.2003.11.009.10.1016/j.rse.2003.11.009
  43. [43] Diepen CV, Wolf J, Keulen HV, Rappoldt C. Wofost: A simulation model of crop production. Soil Use Manage. 1989;5(1):16-24. DOI: 10.1111/j.1475-2743.1989.tb00755.x.10.1111/j.1475-2743.1989.tb00755.x
  44. [44] Boogaard H, Wolf J, Supit I, Niemeyer S, Van Ittersum M. A regional implementation of wofost for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop Res. 2013;143:130-142. DOI: 10.1016/j.fcr.2012.11.005.10.1016/j.fcr.2012.11.005
  45. [45] Kornelsen K C, Coulibaly P. Root-zone soil moisture estimation using data-driven methods. Water Resour Res. 2014;50(4):2946-2962. DOI: 10.1002/2013WR014127.10.1002/2013WR014127
  46. [46] Das NN, Mohanty BP. Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone J. 2006;5(1):296-307. DOI: 10.2136/vzj2005.0033.10.2136/vzj2005.0033
  47. [47] Zeng W, Xu C, Huang J, Wu J, Tuller M. Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model. Soil Sci Soc America J. 2016;80(6):1496-1506. DOI: 10.2136/sssaj2016.06.0188.10.2136/sssaj2016.06.0188
  48. [48] Wigneron JP, Olioso A, Calvet JC, Bertuzzi P. Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling. Water Resour Res. 1999;35(12):3735-3745. DOI: 10.1029/1999WR900258.10.1029/1999WR900258
  49. [49] Li J, Islam S. Estimation of root zone soil moisture and surface fluxes partitioning using near surface soil moisture measurements. J Hydrol. 2002;259(1):1-14. DOI: 10.1016/S0022-1694(01)00589-3.10.1016/S0022-1694(01)00589-3
DOI: https://doi.org/10.1515/eces-2017-0033 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 501 - 516
Published on: Jan 19, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Wen-Zhi Zeng, Guo-Qing Lei, Hong-Ya Zhang, Ming-Hai Hong, Chi Xu, Jing-Wei Wu, Jie-Sheng Huang, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.