References
- Alassafi, M. O., Jarrah, M., & Alotaibi, R. (2022). Time series predicting of COVID-19 based on deep learning. Neurocomputing, 468, 335–344, DOI: https://doi.org/10.1016/j.neucom.2021.10.035.
- Arora, P., Kumar, H., & Panigrahi, B. K. (2020). Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos, solitons & fractals, 139, 110017, DOI: https://doi.org/10.1016/j.chaos.2020.110017.
- Basak, D., Pal, S., Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203–224, DOI: https://doi.org/10.1016/j.chaos.2020.110017.
- Bayyurt, L., & Bayyurt, B. (2020). Forecasting of COVID-19 cases and deaths using ARIMA models. medrxiv, pp. 2020–04, DOI: https://doi.org/10.1101/2020.04.17.20069237.
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32, DOI: https://doi.org/10.1023/A:1010933404324.
- Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv, http://arXiv.org/abs/arXiv:1412.3555.
- Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W.-C., Wang, C.-B., & Bernardini, S. (2020). The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, 57(6), 365–388, DOI: 10.1080/10408363.2020.1783198.
- Coroneo, L., Iacone, F., Paccagnini, A., & Monteiro, P. S. (2023). Testing the predictive accuracy of COVID-19 forecasts. International Journal of Forecasting, 39(2), 606–622, DOI: https://doi.org/10.1016/j.ijforecast.2022.01.005.
- Cumbane, S. P., & Gidófalvi, G. (2024). Deep learning-based approach for COVID-19 spread prediction. International Journal of Data Science and Analytics, 1–17, DOI: https://doi.org/10.1007/s41060-024-00558-1.
- Ghafouri-Fard, S., Mohammad-Rahimi, H., Motie, P., Minabi, M. A., Taheri, M., & Nateghinia, S. (2021). Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review. Heliyon, 7(10), e08143, DOI: https://doi.org/10.1016/j.heliyon.2021.e08143.
- Gunn, S. R. (1997). Support vector machines for classification and regression. Technical report, Citeseer.
- Gupta, V. K., Gupta, A., Kumar, D., & Sardana, A. (2021). Prediction of COVID-19 confirmed, death, and cured cases in India using random forest model. Big Data Mining and Analytics, 4(2), 116–123, DOI: 10.26599/BDMA.2020.9020016.
- Harvey, A. C. (1990). Arima models. In: Time Series and Statistics, (pp. 22–24). Springer, DOI: https://doi.org/10.1007/978-1-349-20865-4_2.
- Herlawati, H. (2020). Covid-19 spread pattern using support vector regression. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 8(1), 67–74, DOI: 10.33558/piksel.v8i1.2024.
- Hu, Z., Ge, Q., Li, S., Jin, L., & Xiong, M. (2020). Artificial intelligence forecasting of COVID-19 in China. arXiv: http://arXiv.org/abs/arXiv:2002.07112.
- Ibrahim, Z., Tulay, P., & Abdullahi, J. (2023). Multi-region machine learning-based novel ensemble approaches for predicting COVID-19 pandemic in Africa. Environmental Science and Pollution Research, 30(2), 3621–3643, DOI: https://doi.org/10.1007/s11356-022-22373-6.
- Kathula, D. N. (2020). Effect of COVID-19 pandemic on the education system in Kenya. Journal of Education, 3(6), 31–52, https://stratfordjournals.org/journals/index.php/journal-of-education/article/view/640.
- Khan, F. M., & Gupta, R. (2020). Arima and NAR based prediction model for time series analysis of COVID-19 cases in India. Journal of Safety Science and Resilience, 1(1), 12–18, DOI: https://doi.org/10.1016/j.jnlssr.2020.06.007.
- Kinney Jr, W. R. (1978). ARIMA and regression in analytical review: An empirical test. Accounting Review, 53, 48–60.
- Koh, D. (2020). COVID-19 lockdowns throughout the world. Occupational Medicine, 70(5), 322–322, DOI: 10.1093/occmed/kqaa073.
- Kufel, T. (2020). ARIMA-based forecasting of the dynamics of confirmed COVID-19 cases for selected European countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 181–204, DOI: 10.24136/eq.2020.009.
- Kumar, A., Singh, R., Kaur, J., Pandey, S., Sharma, V., Thakur, L., et al. (2021). Wuhan to world: the COVID-19 pandemic. Frontiers in cellular and infection microbiology, 11, 596201, DOI: 10.3389/fcimb.2021.596201.
- Langat, A. K., Mutinda, J. K., Mwalili, S. M., & Kazembe, L. N. (2023). COVID-19 impact analysis: assessing African sectors-commodity, service, manufacturing, and education using mixed model approach. Asian Journal of Probability and Statistics, 25(4), 43–55, DOI: 10.9734/ajpas/2023/v25i4571.
- Langat, A. K., Ofori, M., Ishag, M., & Bouzir, Y. (2023). Synthetic control and comparative studies on COVID-19 vaccines enrollment and hesitancy in Africa. Research Square Preprint, DOI: https://doi.org/10.21203/rs.3.rs-2650802/v1.
- Mantoro, T., Handayanto, R. T., Ayu, M. A., & Asian, J. (2020). Prediction of COVID-19 spreading using support vector regression and susceptible infectious recovered model. In 2020 6th International Conference on Computing Engineering and Design (ICCED), (pp. 1–5). IEEE, DOI: 10.1109/ICCED51276.2020.9415858.
- Medsker, L. R., Jain, L. (2001). Recurrent neural networks. Design and Applications, 5(64–67), 2, DOI: https://doi.org/10.1007/978-1-349-20865-4_2.
- MoHke, 2025. COVID-19 Updates, https://www.health.go.ke/COVID-19, Accessed: 24 March 2025.
- Mukolwe, J. A., Mutinda, J. K., & Langat, A. K. (2025). Spatial epidemiology based on the analysis of COVID-19 in Africa. Scientific African, 27, e02557, DOI: https://doi.org/10.1016/j.sciaf.2025.e02557.
- Nayak, D., & Tantravahi, S. L. R. (2024). On building machine learning models for medical dataset with correlated features. Computational and Mathematical Biophysics, 12(1), 20230124, DOI: https://doi.org/10.1515/cmb-2023-0124.
- Ngwacho, A. G. (2020). COVID-19 pandemic impact on kenyan education sector: Learner challenges and mitigations. Journal of Research Innovation and Implications in Education, 4(2), 128–139, DOI: https://doi.org/10.9734/ajpas/2023/v25i4571.
- Ouma, P. N., Masai, A. N., & Nyadera, I. N. (2020). Health coverage and what kenya can learn from the COVID 19 pandemic. Journal of Global Health, 10(2), 020362, DOI: 10.7189/jogh.10.020362.
- Özen, F. (2024). Random forest regression for prediction of COVID-19 daily cases and deaths in Turkey. Heliyon, 10(4), e25746, DOI: https://doi.org/10.1016/j.heliyon.2024.e25746.
- Parbat, D., & Chakraborty, M. (2020). A python based support vector regression model for prediction of COVID19 cases in India. Chaos, Solitons & Fractals, 138, 109942, DOI: https://doi.org/10.1016/j.chaos.2020.109942.
- Perc, M., Gorišek Miksić, N., Slavinec, M., & Stožer, A. (2020). Forecasting COVID-19. Frontiers in Physics, 8, 127, DOI: https://doi.org/10.1016/j.chaos.2020.109942.
- Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PloS one, 15(3), e0231236, DOI: 10.1371/journal.pone.0231236.
- Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., & dos Santos Coelho, L. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons & Fractals, 135, 109853, DOI: https://doi.org/10.1016/j.chaos.2020.109853.
- Rustam, F., Reshi, A. A., Mehmood, A., Ullah, S., On, B.-W., Aslam, W., & Choi, G. S. (2020). COVID-19 future forecasting using supervised machine learning models. IEEE access, 8, 101489–101499, DOI: 10.1109/ACCESS.2020.2997311.
- Sharma, S., Gupta, Y. K., & Mishra, A. K. (2023). Analysis and prediction of COVID-19 multivariate data using deep ensemble learning methods. International Journal of Environmental Research and Public Health, 20(11), 5943, DOI: 10.3390/ijerph20115943.
- Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306, DOI: https://doi.org/10.1016/j.physd.2019.13230.
- Sinha, T., Chowdhury, T., Shaw, R. N., & Ghosh, A. (2021). Analysis and prediction of COVID-19 confirmed cases using deep learning models: a comparative study. In Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2021, pp. 207–218. Springer, DOI: https://doi.org/10.1007/978-981-16-2164-2_18.
- Sujath, R., Chatterjee, J. M., & Hassanien, A. E. (2020). A machine learning forecasting model for COVID-19 pandemic in India. Stochastic Environmental Research and Risk Assessment, 34, 959–972, DOI: https://doi.org/10.1007/s00477-020-01827-8.
- Sulthana, R., Jovith, A., Jaithunbi, A. K. (2021). LSTM and RNN to predict COVID cases: Lethality’s and tests in GCC nations and India. International Journal of Performability Engineering, 17(3), 299, DOI: 10.23940/ijpe.21.03.p5.299306.
- Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). The COVID-19 pandemic. International Journal of Health Sciences, 5(2), 572194, DOI: https://doi.org/10.53730/ijhs.v5n2.2937.
- Wang, J., Yu, H., Hua, Q., Jing, S., Liu, Z., Peng, X., et al. (2020). A descriptive study of random forest algorithm for predicting COVID-19 patients outcome. PeerJ, 8, e9945, DOI: 10.7717/peerj.9945.
- Wang, Y., Yan, Z., Wang, D., Yang, M., Li, Z., Gong, X., et al. (2022). Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. BMC Infectious Diseases, 22(1), 495, DOI: https://doi.org/10.1186/s12879-022-07472-6.
- Xu, L., Magar, R., & Farimani, A. B. (2022). Forecasting COVID-19 new cases using deep learning methods. Computers in Biology and Medicine, 144, 105342, DOI: https://doi.org/10.1016/j.compbiomed.2022.105342.