Figure 1
![Architecture of the LSTM network. Source: From ref. [39].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6942baedeeb8b52cc8e47f39/j_cmb-2025-0026_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKPKSOIEOS%2F20251217%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251217T180418Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjELX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJIMEYCIQCoffuN%2FWTviXihTekqOb9AmCAAocISMo4umuyK6cOdxQIhAMDbNFmrdJV78fYqKrxnk%2BmO1TBwnjEr8g02tXycwmf7KrwFCH4QAhoMOTYzMTM0Mjg5OTQwIgyVCtk3B3ZTmYkoK3IqmQWl7P5md0V%2BxM6Agtu5h2bqPS19FMh06ClXIXcjkfzT7%2BTzomh7j%2BVmTEvJ%2F6mTBejY9ric%2BfO5B9NDNXhcgHmYE33M3Thr1bT3NtftBukk2%2BZx1WtP38aQHZaQ4coDdIZOUkyEPzyJO5dqTv2cWdzVNAsxcDMOjGIMU1PSZOSCLT9I8WfSjHWFoK5H6pzBFayVdzYkVWajaufbyBeg9TNAkqghxRO1nt64lBDIByUjTbHTJOHAXvJu733DBQBfAD59cmmAt3iATb%2BSn91BSzhUGaPZwkDPCYvuWB1j7sw6XhmXPqPJO848K3cEgzD9fzbX%2BtEzl7HiW5C1PSPoUR6CkVk%2Byqz9f8ZGiQ2ygyuPBheUC49XIFJqUvHFTRX9Wihnl0mNBExvWnx8hnvBPQ%2B8ZLWiVoJMfZvpyFLGQbytKvkZsLABN%2FMnfY0XRXXtaV6sEhy5GZlMOibqOiuBkow5gPOZRWiW8RphlvsGH42LRDiae2X%2Fn0mvRkbslu6V33sT91iZY6Xn3lOMHjujD9xRUrOmHrP88SljeGS4eAcCiisS218sfUXN49oV0Am4QdCdvXmoIAsbRcmFBBmAMU0FKpMLuSaDyO9BVq9F7evck8FHZKcoYYJizIn6YZhK2qrv5vOxcPueqjo%2Bc9nO%2FKF5MhPQ%2Bzlf5Z87FbF%2FVSlxuGiw36uYTypbVtCTlJVU3TtXPRVDGOe2RNlN3ZyBMXjphf1kAomJfHiHizgYCTNs%2BX%2Fh1ibdoEwJutdT9UJNXimPr5TvXltjyLZTHKviwjJqEDa3eajOafQlU9x0%2F0cdlRzxADmyYb2yQCl7UiDXTojE%2B%2FAWZdRJGlwX0X%2BSZtg649L2p7U9NkZ2ScqqTwKoy5vk%2FhhDkZLsQTD02IrKBjqwAbrE%2FaUdnaEiG5QTT7Wxp8RSOLqMrHGAADqv1D5Yb3cN4pjyH8Cx0jXxohL56vhzQaLydlOhGXAKM0goW7BwMCdfQCbJXE8o2d5ihCscn4xQpwEYDCC0aX4vsg4zrw1LeKTXT%2Fsrn2JhSeGfiVOKJMtvj6TlRoZIZ%2FP95pMFkTOKb5qXrvHJLz06pPQyeumlT9%2FGb7zBaZPj0o3ne7o4qmyqG9vDqkTbnsN3VQNBNByO&X-Amz-Signature=27356c6ec675c831f3e78f182b53c0508762f9d0ec5cd4703dffd68a888aba2c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2
![Architecture of the GRU. Source: From ref. [39].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6942baedeeb8b52cc8e47f39/j_cmb-2025-0026_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKPKSOIEOS%2F20251217%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251217T180418Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjELX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJIMEYCIQCoffuN%2FWTviXihTekqOb9AmCAAocISMo4umuyK6cOdxQIhAMDbNFmrdJV78fYqKrxnk%2BmO1TBwnjEr8g02tXycwmf7KrwFCH4QAhoMOTYzMTM0Mjg5OTQwIgyVCtk3B3ZTmYkoK3IqmQWl7P5md0V%2BxM6Agtu5h2bqPS19FMh06ClXIXcjkfzT7%2BTzomh7j%2BVmTEvJ%2F6mTBejY9ric%2BfO5B9NDNXhcgHmYE33M3Thr1bT3NtftBukk2%2BZx1WtP38aQHZaQ4coDdIZOUkyEPzyJO5dqTv2cWdzVNAsxcDMOjGIMU1PSZOSCLT9I8WfSjHWFoK5H6pzBFayVdzYkVWajaufbyBeg9TNAkqghxRO1nt64lBDIByUjTbHTJOHAXvJu733DBQBfAD59cmmAt3iATb%2BSn91BSzhUGaPZwkDPCYvuWB1j7sw6XhmXPqPJO848K3cEgzD9fzbX%2BtEzl7HiW5C1PSPoUR6CkVk%2Byqz9f8ZGiQ2ygyuPBheUC49XIFJqUvHFTRX9Wihnl0mNBExvWnx8hnvBPQ%2B8ZLWiVoJMfZvpyFLGQbytKvkZsLABN%2FMnfY0XRXXtaV6sEhy5GZlMOibqOiuBkow5gPOZRWiW8RphlvsGH42LRDiae2X%2Fn0mvRkbslu6V33sT91iZY6Xn3lOMHjujD9xRUrOmHrP88SljeGS4eAcCiisS218sfUXN49oV0Am4QdCdvXmoIAsbRcmFBBmAMU0FKpMLuSaDyO9BVq9F7evck8FHZKcoYYJizIn6YZhK2qrv5vOxcPueqjo%2Bc9nO%2FKF5MhPQ%2Bzlf5Z87FbF%2FVSlxuGiw36uYTypbVtCTlJVU3TtXPRVDGOe2RNlN3ZyBMXjphf1kAomJfHiHizgYCTNs%2BX%2Fh1ibdoEwJutdT9UJNXimPr5TvXltjyLZTHKviwjJqEDa3eajOafQlU9x0%2F0cdlRzxADmyYb2yQCl7UiDXTojE%2B%2FAWZdRJGlwX0X%2BSZtg649L2p7U9NkZ2ScqqTwKoy5vk%2FhhDkZLsQTD02IrKBjqwAbrE%2FaUdnaEiG5QTT7Wxp8RSOLqMrHGAADqv1D5Yb3cN4pjyH8Cx0jXxohL56vhzQaLydlOhGXAKM0goW7BwMCdfQCbJXE8o2d5ihCscn4xQpwEYDCC0aX4vsg4zrw1LeKTXT%2Fsrn2JhSeGfiVOKJMtvj6TlRoZIZ%2FP95pMFkTOKb5qXrvHJLz06pPQyeumlT9%2FGb7zBaZPj0o3ne7o4qmyqG9vDqkTbnsN3VQNBNByO&X-Amz-Signature=62375ded6269a4f4780489892473717102920bec9ed6d21e76cb13d0375cbb6a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Performance metrics (RMSE, MAE, MAPE, and R 2 {R}^{2} ) for six models – ARIMA, SVR, RNN, LSTM, GRU, and RF – across four datasets: total cases, critical cases, severe cases, and total deaths
| Dataset | Model | RMSE | MAE | MAPE (%) |
|
|---|---|---|---|---|---|
| Total cases | ARIMA | 13870.6770 | 10916.6357 | 82.0056 |
|
| SVR | 5589.6811 | 3874.5758 | 26.4893 |
| |
| RNN | 365.3872 | 289.7108 | 2.3229 | 0.9929 | |
| LSTM | 338.4482 | 281.7235 | 2.4740 | 0.9939 | |
| GRU | 215.3505 | 177.0998 | 1.5449 | 0.9975 | |
| RF | 93.4117 | 35.9370 | 0.2668 | 0.9995 | |
| Critical cases | ARIMA | 2055.3009 | 1599.7675 | 70.9180 |
|
| SVR | 467.2761 | 216.0696 | 6.8270 | 0.5970 | |
| RNN | 62.5152 | 54.0835 | 2.8693 | 0.9928 | |
| LSTM | 185.1695 | 144.1515 | 6.6211 | 0.9367 | |
| GRU | 42.5913 | 35.1251 | 1.8999 | 0.9967 | |
| RF | 17.5342 | 7.3318 | 0.3330 | 0.9994 | |
| Severe cases | ARIMA | 6593.2169 | 5188.9595 | 81.8556 |
|
| SVR | 2223.5193 | 1341.9956 | 17.5188 |
| |
| RNN | 140. 1730 | 110.0014 | 2.3796 | 0.9954 | |
| LSTM | 281.8612 | 221.9638 | 3.9355 | 0.9814 | |
| GRU | 140.4860 | 113.2804 | 1.9507 | 0.9954 | |
| RF | 44.4818 | 17.1128 | 0.2668 | 0.9995 | |
| Total deaths | ARIMA | 822.0758 | 639.8712 | 70.9140 |
|
| SVR | 89.1646 | 34.3085 | 2.6381 | 0.9083 | |
| RNN | 23.3445 | 17.9225 | 2.0940 | 0.9937 | |
| LSTM | 40.4583 | 31.6118 | 4.0341 | 0.9811 | |
| GRU | 21.3337 | 18.6039 | 2.5657 | 0.9947 | |
| RF | 7.0137 | 2.9327 | 0.3330 | 0.9994 |
Parameter settings for RNN, LSTM, and GRU models
| Parameter | RNN | LSTM | GRU |
|---|---|---|---|
| Number of layers | 3 | 3 | 3 |
| Activation | ReLU | ReLU | ReLU |
| Loss function | MSE | MSE | MSE |
| Optimizer | Adam | Adam | Adam |
| Learning rate | 0.001 | 0.001 | 0.001 |
| Dropout rate | 0.2 | 0.2 | 0.2 |
| Epochs | 100 | 100 | 100 |
| Batch size | 16 | 16 | 16 |
| Units per layer | 100, 50, 25 | 100, 50, 25 | 100, 50, 25 |
| Early stopping | Yes (monitor = val_loss, patience = 10) | Yes (monitor = val_loss, patience = 10) | Yes (monitor = val_loss, patience = 10) |
ADF test results for stationarity
| Variable | ADF statistic |
|
|---|---|---|
| Total cases |
| 0.4360 |
| Severe cases |
| 0.4360 |
| Critical cases |
| 0.4327 |
| Total deaths |
| 0.4328 |
DM test statistics comparing RF to benchmark models across datasets and loss functions
| Dataset | Benchmark model | MSE | MAE | MAPE |
|---|---|---|---|---|
| Total cases | ARIMA |
|
|
|
| SVR |
|
|
| |
| RNN |
|
|
| |
| LSTM |
|
|
| |
| GRU |
|
|
| |
| Critical cases | ARIMA |
|
|
|
| SVR |
|
|
| |
| RNN |
|
|
| |
| LSTM |
|
|
| |
| GRU |
|
|
| |
| Severe cases | ARIMA |
|
|
|
| SVR |
|
|
| |
| RNN |
|
|
| |
| LSTM |
|
|
| |
| GRU |
|
|
| |
| Total deaths | ARIMA |
|
|
|
| SVR |
|
|
| |
| RNN |
|
|
| |
| LSTM |
|
|
| |
| GRU |
|
|
|
Summary statistics
| Count | Mean | Std Dev | Min | 25% | 50% | 75% | Max | Kurtosis | Skewness | |
|---|---|---|---|---|---|---|---|---|---|---|
| Total cases | 499 | 8841.58 | 5911.12 | 146.05 | 3737.57 | 8218.49 | 12979.51 | 21393.05 |
| 0.4086 |
| Severe cases | 499 | 4210.27 | 2814.82 | 69.55 | 1779.80 | 3913.57 | 6180.72 | 10187.17 |
| 0.4086 |
| Critical cases | 499 | 1472.06 | 983.35 | 25.06 | 616.25 | 1359.01 | 2158.80 | 3570.59 |
| 0.4116 |
| Total deaths | 499 | 588.83 | 393.34 | 10.03 | 246.50 | 543.60 | 863.52 | 1428.24 |
| 0.4116 |