Have a personal or library account? Click to login
Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection Cover

Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection

Open Access
|Jun 2024

References

  1. Aguiar, M., Anam, V., Cusimano, N., Knopoff, D., & Stollenwerk, N. (2022). Understanding COVID-19 epidemics: a multi-scale modeling approach. In: Predicting Pandemics in a Globally Connected World, Volume 1: Toward a Multiscale, Multidisciplinary Framework through Modeling and Simulation (pp. 11–42). Springer.
  2. Almocera, A. E. S., Hernandez-Vargas, E. A., & Nguyen, V. K. (2018). Multiscale model within-host and between-host for viral infectious diseases. Journal of Mathematical Biology, 77(4), 1035–1057.
  3. Alqahtani, R. T. (2021). Mathematical model of sir epidemic system (COVID-19) with fractional derivative: stability and numerical analysis. Advances in Difference Equations, 2021(1), 1–16.
  4. Bellomo, N., Burini, D., & Outada, N. (2022). Multiscale models of COVID-19 with mutations and variants. Networks and Heterogeneous Media, 17(3), 293–310.
  5. Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model. Journal of Applied Mathematics, 2019, 1–13.
  6. Biswas, S. K., Ghosh, J. K., Sarkar, S., & Ghosh, U. (2020). Covid-19 pandemic in India: a mathematical model study. Nonlinear Dynamics, 102(1), 537–553.
  7. Carlos Castillo-Chavez, Z. F., & Huang, W. (2002). On the computation of reproduction number and its role in global stability. Institute for Mathematics and Its Applications, 125(2), 229–250.
  8. Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering, 1(2), 361–404.
  9. Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 1–8.
  10. Chhetri, B., Bhagat, V. M., Vamsi, D., Ananth, V., Mandale, R., Muthusamy, S., Sanjeevi, C. B., et al. (2021). Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in covid-19 identifies combination therapy to be most effective and optimal. Alexandria Engineering Journal, 60(2), 2491–2512.
  11. Coombs, D., Gilchrist, M. A., & Ball, C. L. (2007). Evaluating the importance of within-and between-host selection pressures on the evolution of chronic pathogens. Theoretical Population Biology, 72(4), 576–591.
  12. Dashtbali, M., & Mirzaie, M. (2021). A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Scientific Reports, 11(1), 1–11
  13. Diekmann, O., Heesterbeek, J., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885.
  14. Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B., & Leite, M. C. A. (2012). A model for coupling within-host and between-host dynamics in an infectious disease. Nonlinear Dynamics, 68(3), 401–411.
  15. Garira, W. (2017). A complete categorization of multiscale models of infectious disease systems. Journal of Biological Dynamics, 11(1), 378–435.
  16. Garira, W., & Mathebula, D. (2020). Development and application of multiscale models of acute viral infections in intervention research. Mathematical Methods in the Applied Sciences, 43(6), 3280–3306.
  17. Gilchrist, M. A., & Sasaki, A. (2002). Modeling host-parasite coevolution: a nested approach based on mechanistic models. Journal of Theoretical Biology, 218(3), 289–308.
  18. Guo, D., Li, K. C., Peters, T. R., Snively, B. M., Poehling, K. A., & Zhou, X. (2015). Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Scientific Reports, 5(1), 1–9.
  19. Gutierrez, J. B., Galinski, M. R., Cantrell, S., & Voit, E. O. (2015). From within host dynamics to the epidemiology of infectious disease: scientific overview and challenges. Mathematical Biosciences, 270, 143–155.
  20. Hadjichrysanthou, C., Cauët, E., Lawrence, E., Vegvari, C., De Wolf, F., and Anderson, R. M. (2016). Understanding the within-host dynamics of influenza a virus: from theory to clinical implications. Journal of The Royal Society Interface, 13(119), 20160289.
  21. Handel, A., & Rohani, P. (2015). Crossing the scale from within-host infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1675), 20140302.
  22. Heldt, F. S., Frensing, T., Pflugmacher, A., Gröpler, R., Peschel, B., & Reichl, U. (2013). Multiscale modeling of influenza a virus infection supports the development of direct-acting antivirals. PLoS Computational Biology, 9(11), e1003372.
  23. Jeffery, G. M., & Eyles, D. E. (1955). Infectivity to mosquitoes of plasmodium falciparum as related to gametocyte density and duration of infection1. The American Journal of Tropical Medicine and Hygiene, 4(5), 781–789.
  24. Kaplan, J. E., Khabbaz, R. F., Murphy, E. L., Hermansen, S., Roberts, C., Lal, R., …, Schreiber, G. B. (1996). Male-to-female transmission of human t-cell lymphotropic virus types i and ii: association with viral load. JAIDS Journal of Acquired Immune Deficiency Syndromes, 12(2), 193–201.
  25. Kawasuji, H., Takegoshi, Y., Kaneda, M., Ueno, A., Miyajima, Y., Kawago, K., …, Yamamoto, Y. (2020). Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PloS One, 15(12), e0243597.
  26. Khan, M. A., Ali, Z., Dennis, L., Khan, I., Islam, S., Ullah, M., & Gul, T. (2015). Stability analysis of an SVIR epidemic model with non-linear saturated incidence rate. Applied Mathematical Sciences, 9(23), 1145–1158.
  27. Leontitsis, A., Senok, A., Alsheikh-Ali, A., Al Nasser, Y., Loney, T., & Alshamsi, A. (2021). Seahir: A specialized compartmental model for COVID-19. International Journal of Environmental Research and Public Health, 18(5), 2667.
  28. Li, C., Xu, J., Liu, J., & Zhou, Y. (2020). The within-host viral kinetics of sars-cov-2. bioRxiv.
  29. Mandale, R., Kumar, A., Vamsi, D., & Srivastava, P. K. (2021). Dynamics of an infectious disease in the presence of saturated medical treatment of Holling type iii and self-protection. Journal of Biological Systems, 29(2), 245–289.
  30. Martcheva, M., & Li, X.-Z. (2013). Linking immunological and epidemiological dynamics of HIV: the case of super-infection. Journal of Biological Dynamics, 7(1), 161–182.
  31. Mellors, J. W., Rinaldo, C. R., Gupta, P., White, R. M., Todd, J. A., & Kingsley, L. A. (1996). Prognosis in hiv-1 infection predicted by the quantity of virus in plasma. Science, 272(5265), 1167–1170.
  32. Miller, E., Warburg, A., Novikov, I., Hailu, A., Volf, P., Seblova, V., & Huppert, A. (2014). Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Neglected Tropical Diseases, 8(10), e3288.
  33. Murillo, L. N., Murillo, M. S., & Perelson, A. S. (2013). Towards multiscale modeling of influenza infection. Journal of Theoretical Biology, 332, 267–290.
  34. Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). Seir model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 13(1), 1–5.
  35. Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846.
  36. Prakash, D. B., Vamsi, D., Rajesh, D. B., & Sanjeevi, C. B. (2020). Control intervention strategies for within-host, between-host and their efficacy in the treatment, spread of COVID-19: A multi scale modeling approach. Computational and Mathematical Biophysics, 8(1), 198–210.
  37. Quinn, T. C., Wawer, M. J., Sewankambo, N., Serwadda, D., Li, C., Wabwire-Mangen, F., …, Gray, R. H. (2000). Viral load and heterosexual transmission of human immunodeficiency virus type 1. New England Journal of Medicine, 342(13), 921–929.
  38. Roldan, E. Q., Biasiotto, G., Magro, P., & Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against sars-cov-2 infection (COVID-19), A role for iron homeostasis? Pharmacological Research, page 104904.
  39. Samui, P., Mondal, J., & Khajanchi, S. (2020). A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos, Solitons & Fractals, 140, 110173.
  40. Sarkar, K., Khajanchi, S., & Nieto, J. J. (2020). Modeling and forecasting the COVID-19 pandemic in india. Chaos, Solitons & Fractals, 139, 110049.
  41. Tu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., …, Chiou, S.-H. (2020). A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 21(7), 2657.
  42. Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303.
  43. Wang, B. X., & Fish, E. N. (2019). Global virus outbreaks: Interferons as 1st responders. In: Seminars in Immunology (vol. 43, p. 101300). San Diego: Academic Press.
  44. Wang, T., Wu, Y., Lau, J. Y.-N., Yu, Y., Liu, L., Li, J., …, Jiang, B. (2020). A four-compartment model for the COVID-19 infection-implications on infection kinetics, control measures, and lockdown exit strategies. Precision Clinical Medicine, 3(2), 104–112.
  45. Wang, X., Wang, S., Wang, J., & Rong, L. (2022). A multiscale model of COVID-19 dynamics. Bulletin of Mathematical Biology, 84(9), 99.
  46. Wen, W.-H., Chang, M.-H., Zhao, L.-L., Ni, Y.-H., Hsu, H.-Y., Wu, J.-F., …, Chen, H.-L. (2013). Mother-to-infant transmission of hepatitis b virus infection: significance of maternal viral load and strategies for intervention. Journal of Hepatology, 59(1), 24–30.
  47. Zeb, A., Alzahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. BioMed Research International, 2020, 3452402.
  48. Zhao, Z.-Y., Zhu, Y.-Z., Xu, J.-W., Hu, S.-X., Hu, Q.-Q., Lei, Z., …, Luo, L. (2020). A five-compartment model of age-specific transmissibility of SARS-CoV-2. Infectious Diseases of Poverty, 9(1), 1–15.
Language: English
Submitted on: Dec 21, 2023
Accepted on: May 6, 2024
Published on: Jun 21, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2024 Bishal Chhetri, Krishna Kiran Vamsi Dasu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.