References
- Aguiar, M., Anam, V., Cusimano, N., Knopoff, D., & Stollenwerk, N. (2022). Understanding COVID-19 epidemics: a multi-scale modeling approach. In: Predicting Pandemics in a Globally Connected World, Volume 1: Toward a Multiscale, Multidisciplinary Framework through Modeling and Simulation (pp. 11–42). Springer.
- Almocera, A. E. S., Hernandez-Vargas, E. A., & Nguyen, V. K. (2018). Multiscale model within-host and between-host for viral infectious diseases. Journal of Mathematical Biology, 77(4), 1035–1057.
- Alqahtani, R. T. (2021). Mathematical model of sir epidemic system (COVID-19) with fractional derivative: stability and numerical analysis. Advances in Difference Equations, 2021(1), 1–16.
- Bellomo, N., Burini, D., & Outada, N. (2022). Multiscale models of COVID-19 with mutations and variants. Networks and Heterogeneous Media, 17(3), 293–310.
- Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model. Journal of Applied Mathematics, 2019, 1–13.
- Biswas, S. K., Ghosh, J. K., Sarkar, S., & Ghosh, U. (2020). Covid-19 pandemic in India: a mathematical model study. Nonlinear Dynamics, 102(1), 537–553.
- Carlos Castillo-Chavez, Z. F., & Huang, W. (2002). On the computation of reproduction number and its role in global stability. Institute for Mathematics and Its Applications, 125(2), 229–250.
- Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering, 1(2), 361–404.
- Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 1–8.
- Chhetri, B., Bhagat, V. M., Vamsi, D., Ananth, V., Mandale, R., Muthusamy, S., Sanjeevi, C. B., et al. (2021). Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in covid-19 identifies combination therapy to be most effective and optimal. Alexandria Engineering Journal, 60(2), 2491–2512.
- Coombs, D., Gilchrist, M. A., & Ball, C. L. (2007). Evaluating the importance of within-and between-host selection pressures on the evolution of chronic pathogens. Theoretical Population Biology, 72(4), 576–591.
- Dashtbali, M., & Mirzaie, M. (2021). A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19. Scientific Reports, 11(1), 1–11
- Diekmann, O., Heesterbeek, J., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885.
- Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B., & Leite, M. C. A. (2012). A model for coupling within-host and between-host dynamics in an infectious disease. Nonlinear Dynamics, 68(3), 401–411.
- Garira, W. (2017). A complete categorization of multiscale models of infectious disease systems. Journal of Biological Dynamics, 11(1), 378–435.
- Garira, W., & Mathebula, D. (2020). Development and application of multiscale models of acute viral infections in intervention research. Mathematical Methods in the Applied Sciences, 43(6), 3280–3306.
- Gilchrist, M. A., & Sasaki, A. (2002). Modeling host-parasite coevolution: a nested approach based on mechanistic models. Journal of Theoretical Biology, 218(3), 289–308.
- Guo, D., Li, K. C., Peters, T. R., Snively, B. M., Poehling, K. A., & Zhou, X. (2015). Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Scientific Reports, 5(1), 1–9.
- Gutierrez, J. B., Galinski, M. R., Cantrell, S., & Voit, E. O. (2015). From within host dynamics to the epidemiology of infectious disease: scientific overview and challenges. Mathematical Biosciences, 270, 143–155.
- Hadjichrysanthou, C., Cauët, E., Lawrence, E., Vegvari, C., De Wolf, F., and Anderson, R. M. (2016). Understanding the within-host dynamics of influenza a virus: from theory to clinical implications. Journal of The Royal Society Interface, 13(119), 20160289.
- Handel, A., & Rohani, P. (2015). Crossing the scale from within-host infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1675), 20140302.
- Heldt, F. S., Frensing, T., Pflugmacher, A., Gröpler, R., Peschel, B., & Reichl, U. (2013). Multiscale modeling of influenza a virus infection supports the development of direct-acting antivirals. PLoS Computational Biology, 9(11), e1003372.
- Jeffery, G. M., & Eyles, D. E. (1955). Infectivity to mosquitoes of plasmodium falciparum as related to gametocyte density and duration of infection1. The American Journal of Tropical Medicine and Hygiene, 4(5), 781–789.
- Kaplan, J. E., Khabbaz, R. F., Murphy, E. L., Hermansen, S., Roberts, C., Lal, R., …, Schreiber, G. B. (1996). Male-to-female transmission of human t-cell lymphotropic virus types i and ii: association with viral load. JAIDS Journal of Acquired Immune Deficiency Syndromes, 12(2), 193–201.
- Kawasuji, H., Takegoshi, Y., Kaneda, M., Ueno, A., Miyajima, Y., Kawago, K., …, Yamamoto, Y. (2020). Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PloS One, 15(12), e0243597.
- Khan, M. A., Ali, Z., Dennis, L., Khan, I., Islam, S., Ullah, M., & Gul, T. (2015). Stability analysis of an SVIR epidemic model with non-linear saturated incidence rate. Applied Mathematical Sciences, 9(23), 1145–1158.
- Leontitsis, A., Senok, A., Alsheikh-Ali, A., Al Nasser, Y., Loney, T., & Alshamsi, A. (2021). Seahir: A specialized compartmental model for COVID-19. International Journal of Environmental Research and Public Health, 18(5), 2667.
- Li, C., Xu, J., Liu, J., & Zhou, Y. (2020). The within-host viral kinetics of sars-cov-2. bioRxiv.
- Mandale, R., Kumar, A., Vamsi, D., & Srivastava, P. K. (2021). Dynamics of an infectious disease in the presence of saturated medical treatment of Holling type iii and self-protection. Journal of Biological Systems, 29(2), 245–289.
- Martcheva, M., & Li, X.-Z. (2013). Linking immunological and epidemiological dynamics of HIV: the case of super-infection. Journal of Biological Dynamics, 7(1), 161–182.
- Mellors, J. W., Rinaldo, C. R., Gupta, P., White, R. M., Todd, J. A., & Kingsley, L. A. (1996). Prognosis in hiv-1 infection predicted by the quantity of virus in plasma. Science, 272(5265), 1167–1170.
- Miller, E., Warburg, A., Novikov, I., Hailu, A., Volf, P., Seblova, V., & Huppert, A. (2014). Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Neglected Tropical Diseases, 8(10), e3288.
- Murillo, L. N., Murillo, M. S., & Perelson, A. S. (2013). Towards multiscale modeling of influenza infection. Journal of Theoretical Biology, 332, 267–290.
- Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). Seir model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 13(1), 1–5.
- Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846.
- Prakash, D. B., Vamsi, D., Rajesh, D. B., & Sanjeevi, C. B. (2020). Control intervention strategies for within-host, between-host and their efficacy in the treatment, spread of COVID-19: A multi scale modeling approach. Computational and Mathematical Biophysics, 8(1), 198–210.
- Quinn, T. C., Wawer, M. J., Sewankambo, N., Serwadda, D., Li, C., Wabwire-Mangen, F., …, Gray, R. H. (2000). Viral load and heterosexual transmission of human immunodeficiency virus type 1. New England Journal of Medicine, 342(13), 921–929.
- Roldan, E. Q., Biasiotto, G., Magro, P., & Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against sars-cov-2 infection (COVID-19), A role for iron homeostasis? Pharmacological Research, page 104904.
- Samui, P., Mondal, J., & Khajanchi, S. (2020). A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos, Solitons & Fractals, 140, 110173.
- Sarkar, K., Khajanchi, S., & Nieto, J. J. (2020). Modeling and forecasting the COVID-19 pandemic in india. Chaos, Solitons & Fractals, 139, 110049.
- Tu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., …, Chiou, S.-H. (2020). A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 21(7), 2657.
- Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303.
- Wang, B. X., & Fish, E. N. (2019). Global virus outbreaks: Interferons as 1st responders. In: Seminars in Immunology (vol. 43, p. 101300). San Diego: Academic Press.
- Wang, T., Wu, Y., Lau, J. Y.-N., Yu, Y., Liu, L., Li, J., …, Jiang, B. (2020). A four-compartment model for the COVID-19 infection-implications on infection kinetics, control measures, and lockdown exit strategies. Precision Clinical Medicine, 3(2), 104–112.
- Wang, X., Wang, S., Wang, J., & Rong, L. (2022). A multiscale model of COVID-19 dynamics. Bulletin of Mathematical Biology, 84(9), 99.
- Wen, W.-H., Chang, M.-H., Zhao, L.-L., Ni, Y.-H., Hsu, H.-Y., Wu, J.-F., …, Chen, H.-L. (2013). Mother-to-infant transmission of hepatitis b virus infection: significance of maternal viral load and strategies for intervention. Journal of Hepatology, 59(1), 24–30.
- Zeb, A., Alzahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class. BioMed Research International, 2020, 3452402.
- Zhao, Z.-Y., Zhu, Y.-Z., Xu, J.-W., Hu, S.-X., Hu, Q.-Q., Lei, Z., …, Luo, L. (2020). A five-compartment model of age-specific transmissibility of SARS-CoV-2. Infectious Diseases of Poverty, 9(1), 1–15.