Have a personal or library account? Click to login
Removal of cytotoxic tamoxifen from aqueous solutions using a geopolymer-based nepheline–cordierite adsorbent Cover

Removal of cytotoxic tamoxifen from aqueous solutions using a geopolymer-based nepheline–cordierite adsorbent

Open Access
|Dec 2025

References

  1. Lung, I, Soran, M-L, Stegarescu, A, Opris, O, Gutoiu, S, Leostean, C, et al.. Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J Hazard Mater 2021;403:123528. https://doi.org/10.1016/j.jhazmat.2020.123528.
  2. Alothman, ZA, Badjah, AY, Alharbi, OML, Ali, I. Copper carboxymethyl cellulose nanoparticles for efficient removal of tetracycline antibiotics in water. Environ Sci Pollut Res 2020;27:42960–8. https://doi.org/10.1007/s11356-020-10189-1.
  3. Zandipak, R, Sobhanardakani, S. Novel mesoporous Fe3O4/SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water. Clean Technol Environ Policy 2018;20:871–85. https://doi.org/10.1007/s10098-018-1507-5.
  4. Li, J, Yu, G, Pan, L, Li, C, You, F, Xie, S, et al.. Study of ciprofloxacin removal by biochar obtained from used tea leaves. J Environ Sci 2018;73:20–30. https://doi.org/10.1016/j.jes.2017.12.024.
  5. Sun, L, Zha, J, Spear, PA, Wang, Z. Tamoxifen effects on the early life stages and reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Pharmacol 2007;24:23–9. https://doi.org/10.1016/j.etap.2007.01.003.
  6. Roberts, P, Thomas, K. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 2006;356:143–53. https://doi.org/10.1016/j.scitotenv.2005.04.031.
  7. Besse, JP, Latour, JF, Garric, J. Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 2012;39:73–86. https://doi.org/10.1016/j.envint.2011.10.002.
  8. Ashton, D, Hilton, M, Thomas, KV. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 2004;333:167–84. https://doi.org/10.1016/j.scitotenv.2004.04.062.
  9. Ferrando-Climent, L, Cruz-Morató, C, Marco-Urrea, E, Vicent, T, Sarrà, M, Rodriguez-Mozaz, S, et al.. Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 2015;136:9–19. https://doi.org/10.1016/j.chemosphere.2015.03.051.
  10. Ferrando-Climent, L, Rodriguez-Mozaz, S, Barceló, D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal Bioanal Chem 2013;405:5937–52. https://doi.org/10.1007/s00216-013-6794-4.
  11. Ferrando-Climent, L, Rodriguez-Mozaz, S, Barceló, D. Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 2014;193:216–23. https://doi.org/10.1016/j.envpol.2014.07.002.
  12. Jean, J, Perrodin, Y, Pivot, C, Trepo, D, Perraud, M, Droguet, J, et al.. Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J Environ Manage 2012;103:113–21. https://doi.org/10.1016/j.jenvman.2012.03.005.
  13. DellaGreca, M, Iesce, MR, Isidori, M, Nardelli, A, Previtera, L, Rubino, M. Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere 2007;67:1933–9. https://doi.org/10.1016/j.chemosphere.2006.12.001.
  14. Chen, Z, Park, G, Herckes, P, Westerhoff, P. Physicochemical treatment of three chemotherapy drugs: irinotecan, tamoxifen, and cyclophosphamide. J Adv Oxid Technol 2008;11. https://doi.org/10.1515/jaots-2008-0209.
  15. Zhang, J, Chang, VWC, Giannis, A, Wang, J-Y. Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 2013;445–446:281–98. https://doi.org/10.1016/j.scitotenv.2012.12.061.
  16. Negreira, N, Regueiro, J, López de Alda, M, Barceló, D. Transformation of tamoxifen and its major metabolites during water chlorination: identification and in silico toxicity assessment of their disinfection byproducts. Water Res 2015;85:199–207. https://doi.org/10.1016/j.watres.2015.08.036.
  17. Ferrando-Climent, L, Gonzalez-Olmos, R, Anfruns, A, Aymerich, I, Corominas, L, Barceló, D, et al.. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: transformation products and toxicity assessment. Chemosphere 2017;168:284–92. https://doi.org/10.1016/j.chemosphere.2016.10.057.
  18. Zhou, Y, He, Y, He, Y, Liu, X, Xu, B, Yu, J, et al.. Analyses of tetracycline adsorption on alkali-acid modified magnetic biochar: site energy distribution consideration. Sci Total Environ 2019;650:2260–6. https://doi.org/10.1016/j.scitotenv.2018.09.393.
  19. Shao, S, Hu, Y, Cheng, J, Chen, Y. Biodegradation mechanism of tetracycline (TEC) by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics. Ecotoxicol Environ Saf 2019;185:109676. https://doi.org/10.1016/j.ecoenv.2019.109676.
  20. Li, C, Lin, H, Armutlulu, A, Xie, R, Zhang, Y, Meng, X. Hydroxylamine-assisted catalytic degradation of ciprofloxacin in ferrate/persulfate system. Chem Eng J 2019;360:612–20. https://doi.org/10.1016/j.cej.2018.11.218.
  21. Yi, H, Lai, C, Huo, X, Qin, L, Fu, Y, Liu, S, et al.. H2O2 -free photo-Fenton system for antibiotics degradation in water via the synergism of oxygen-enriched graphitic carbon nitride polymer and nano manganese ferrite. Environ Sci Nano 2022;9:815–26. https://doi.org/10.1039/D1EN00869B.
  22. Shoorangiz, M, Nikoo, MR, Salari, M, Rakhshandehroo, GR, Sadegh, M. Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin. Process Saf Environ Prot 2019;132:340–50. https://doi.org/10.1016/j.psep.2019.10.011.
  23. Hassani, A, Khataee, A, Fathinia, M, Karaca, S. Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2 /MMT nanocomposite: nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Saf Environ Prot 2018;116:365–76. https://doi.org/10.1016/j.psep.2018.03.013.
  24. Palacio, DA, Leiton, LM, Urbano, BF, Rivas, BL. Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase polymer-based retention. Environ Res 2020;182:109014. https://doi.org/10.1016/j.envres.2019.109014.
  25. Liu, J, Zhou, B, Zhang, H, Ma, J, Mu, B, Zhang, W. A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution. Bioresour Technol 2019;294:122152. https://doi.org/10.1016/j.biortech.2019.122152.
  26. Dai, Y, Zhang, K, Meng, X, Li, J, Guan, X, Sun, Q, et al.. New use for spent coffee ground as an adsorbent for tetracycline removal in water. Chemosphere 2019;215:163–72. https://doi.org/10.1016/j.chemosphere.2018.09.150.
  27. Li, M, Liu, Y, Liu, S, Zeng, G, Hu, X, Tan, X, et al.. Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. J Colloid Interface Sci 2018;521:150–9. https://doi.org/10.1016/j.jcis.2018.03.003.
  28. Chen, L, Yuan, T, Ni, R, Yue, Q, Gao, B. Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles. Chem Eng J 2019;365:183–92. https://doi.org/10.1016/j.cej.2019.02.051.
  29. Selmi, T, Sanchez-Sanchez, A, Gadonneix, P, Jagiello, J, Seffen, M, Sammouda, H, et al.. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin. Ind Crops Prod 2018;115:146–57. https://doi.org/10.1016/j.indcrop.2018.02.005.
  30. Dutta, V, Singh, P, Shandilya, P, Sharma, S, Raizada, P, Saini, AK, et al.. Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. J Environ Chem Eng 2019;7:103132. https://doi.org/10.1016/j.jece.2019.103132.
  31. de Sousa, DNR, Insa, S, Mozeto, AA, Petrovic, M, Chaves, TF, Fadini, PS. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 2018;205:137–46. https://doi.org/10.1016/j.chemosphere.2018.04.085.
  32. Premarathna, KSD, Rajapaksha, AU, Adassoriya, N, Sarkar, B, Sirimuthu, NMS, Cooray, A, et al.. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. J Environ Manage 2019;238:315–22. https://doi.org/10.1016/j.jenvman.2019.02.069.
  33. Davidovits, J. Geopolymer chemistry and applications 2020.
  34. Kim, D, Lai, H-T, Chilingar, GV, Yen, TF. Geopolymer formation and its unique properties. Environ Geol 2006;51:103–11. https://doi.org/10.1007/s00254-006-0308-z.
  35. Ergun, Y, Caliskan, H, Karali, HI. Production and characterization of open cell cordierite from boron and waste materials by geopolymer method for the emission after treatment System of diesel engines. Glob Challenges 2025;9:2500048. https://doi.org/10.1002/gch2.202500048.
  36. Choy, KKH, Porter, JF, McKay, G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J Chem Eng Data 2000;45:575–84. https://doi.org/10.1021/je9902894.
  37. Adak, A, Bandyopadhyay, M, Pal, A. Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep Purif Technol 2005;44:139–44. https://doi.org/10.1016/j.seppur.2005.01.002.
  38. Arzu Engin, İG. Hidroksiapatit kullanılarak Sulu Çözeltiden Bakır İyonlarının uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Bilim Derg 2009:95–104. http://hdl.handle.net/11630/780.
  39. Kurtulus, C, Baspinar, MS. An essential study of strength development in geopolymer materials using the JMAK method. Arab J Sci Eng 2023;48:4295–307. https://doi.org/10.1007/s13369-022-06962-8.
  40. Monvisade, P, Siriphannon, P. Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption. Appl Clay Sci 2009;42:427–31. https://doi.org/10.1016/j.clay.2008.04.013.
  41. Parolo, ME, Savini, MC, Vallés, JM, Baschini, MT, Avena, MJ. Tetracycline adsorption on montmorillonite: ph and ionic strength effects. Appl Clay Sci 2008;40:179–86. https://doi.org/10.1016/j.clay.2007.08.003.
  42. Arora, C, Kumar, P, Soni, S, Mittal, J, Mittal, A, Singh, B. Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. Desalin Water Treat 2020;195:341–52. https://doi.org/10.5004/dwt.2020.25897.
  43. Tang, Y, Guo, H, Xiao, L, Yu, S, Gao, N, Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf A Physicochem Eng Asp 2013;424:74–80. https://doi.org/10.1016/j.colsurfa.2013.02.030.
  44. Puertas, F, Torres-Carrasco, M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res 2014;57:95–104. https://doi.org/10.1016/j.cemconres.2013.12.005.
  45. Monich, PR, Romero, AR, Höllen, D, Bernardo, E. Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. J Clean Prod 2018;188:871–8. https://doi.org/10.1016/j.jclepro.2018.03.167.
  46. Tchakouté, HK, Rüscher, CH, Kong, S, Kamseu, E, Leonelli, C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: a comparative study. Constr Build Mater 2016;114:276–89. https://doi.org/10.1016/j.conbuildmat.2016.03.184.
  47. Gunasekara, CM. Influence of properties of fly ash from different sources on the mix design and performance of geopolymer concrete. RMIT, Melb 2016;245.
  48. Anggarini, U, Pratapa, S, Purnomo, V, Sukmana, NC. A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis. Open Chem 2019;17:629–38. https://doi.org/10.1515/chem-2019-0073.
  49. Guo, X, Shi, H, Dick, WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 2010;32:142–7. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
  50. Ji, L, Chen, W, Duan, L, Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 2009;43:2322–7. https://doi.org/10.1021/es803268b.
Language: English
Submitted on: Jul 24, 2025
Accepted on: Nov 2, 2025
Published on: Dec 15, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Ayşegül Türk Baydir, Yavuz Ergün, İbrahim Bulduk, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.