Have a personal or library account? Click to login
Removal of cytotoxic tamoxifen from aqueous solutions using a geopolymer-based nepheline–cordierite adsorbent Cover

Removal of cytotoxic tamoxifen from aqueous solutions using a geopolymer-based nepheline–cordierite adsorbent

Open Access
|Dec 2025

Figures & Tables

Figure 1:

Flow diagram of geopolymer preparation process.
Flow diagram of geopolymer preparation process.

Figure 2:

SEM images of geopolymer adsorbent at different magnifications. (A) 50 X magnification (100 µm). (B) 50 X magnification (100 µm). (C) 500 KX magnification (1 µm). (D) 200 KX magnification (1 µm).
SEM images of geopolymer adsorbent at different magnifications. (A) 50 X magnification (100 µm). (B) 50 X magnification (100 µm). (C) 500 KX magnification (1 µm). (D) 200 KX magnification (1 µm).

Figure 3:

FTIR spectrum and pore surface area of geopolymer adsorbent. (A) FTIR spectrum. (B) Pore surface area distrbution.
FTIR spectrum and pore surface area of geopolymer adsorbent. (A) FTIR spectrum. (B) Pore surface area distrbution.

Figure 4:

XRD and pHpzc graph of geopolymer adsorbent material. (A) XRD graph. (B) pHpzc graph.
XRD and pHpzc graph of geopolymer adsorbent material. (A) XRD graph. (B) pHpzc graph.

Figure 5:

Effect of adsorption parameters on tamoxifen removal efficiency. (A) Effect of pH on tamoxifen removal efficiency. (B) Effect of adsorbent dose on tamoxifen removal efficiency. (C) Effect of contact time on tamoxifen removal efficiency. (D) Effect of initial concentration on tamoxifen removal efficiency.
Effect of adsorption parameters on tamoxifen removal efficiency. (A) Effect of pH on tamoxifen removal efficiency. (B) Effect of adsorbent dose on tamoxifen removal efficiency. (C) Effect of contact time on tamoxifen removal efficiency. (D) Effect of initial concentration on tamoxifen removal efficiency.

Figure 6:

Isotherm model comparison for tamoxien adsorption.
Isotherm model comparison for tamoxien adsorption.

Figure 7:

Kinetic model comparison for tamoxien adsorption.
Kinetic model comparison for tamoxien adsorption.

Thermodynamic parameters for tamoxifen adsorption_

Temperature (K)ΔG (kJ/mol)ΔH (kJ/mol)ΔS (J/mol·K)
298−6.84848.267174.568
308−5.33948.267174.568
318−4.09548.267174.568

Parameters of isotherm models and (R 2) values for nonlinear regression_

ModelParameters(R 2)
Langmuir(q m  = 34.48 mg/g),(K L  = 1.07 L/mg)0.996
Freundlich(K F  = 13.80 mg/g (L/mg)(1/n)),(n = 2.14)0.972
Temkin(A T  = 18.62 L/mg),(b T  = 468.32 J/mol)0.987
Dubinin-Radushkevich(q s  = 28.52 mg/g}),(E = 9.13 kJ/mol})0.978

Comparison of the adsorption capacity of the developed nepheline-cordierite geopolymer with other adsorbents reported in the literature for the removal of tamoxifen and related cytostatic drugs_

Adsorbent materialTarget compoundMaximum capacity (q max, mg/g)Optimal pHReference
Nepheline-cordierite geopolymer (this work) Tamoxifen 34.48 7
Activated carbon (Commercial, F400)Tamoxifen18.206[17]
Montmorillonite K10 ClayTamoxifen12.856[17]
Zeolite betaTamoxifen27.107[17]
Multi-walled carbon nanotubes (MWCNTs)Tamoxifen41.505[15]
Graphene oxide (GO)Tamoxifen2.987[14]
Magnetic graphene oxide (MGO)Tamoxifen28.76[3]
Activated carbon from pine sawdustCyclophosphamide129.97[4]
Metal-organic framework (MIL-101Cr)Ifosfamide105.06[11]

Kinetic model parameters and (R 2) values from non-linear regression_

ModelParameters(R 2)
Pseudo-first-order(q e  = 24.12 mg/g)(k 1  = 0.0216 min−1)0.962
Pseudo-second-order(q e  = 24.75 mg/g)(k 2 = 0.0134 g/mg·min)(h = 8.21 mg/g·min)0.998
Elovich(α = 35.47 mg/g·min)(β = 0.2389 g/mg)0.889
Intraparticle diffusion(k id = 2.86 mg/g·min0.5)(C = 11.77 mg/g)0.871
Language: English
Submitted on: Jul 24, 2025
Accepted on: Nov 2, 2025
Published on: Dec 15, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Ayşegül Türk Baydir, Yavuz Ergün, İbrahim Bulduk, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.