Have a personal or library account? Click to login
Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market Cover

Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market

Open Access
|Aug 2019

References

  1. Boyd, S., Vandenberghe, L., 2004. ‘Convex Optimization’ Cambridge University Press New York, NY, USA.
  2. Cawley, G., Talbot, N., 2010. ‘On over-fitting in model selection and subsequent selection bias in performance evaluation’ J. Mach. Learn. Res. 11, 2079–2107.
  3. Chen M., Narwal N., Schultz. M., 2018, Stanford University. Predicting Price Changes in Ethereum. URL: https://pdfs.semanticscholar.org/ceff/65e02b2b9b6b181cfc956350351b8e284a01.pdf?_ga=2.139748214.472574922.1533418619-1566045322.1533418619
  4. Chordia, T., Swaminathan, B., 2002. ‘Trading volume and cross-autocorrelations in stock returns’ J. Financ. 55 (2), 913–935.
  5. Cristianini, N. and Shawe-Taylor, J. 2000, ‘An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods’ Cambridge University Press Cambridge.
  6. David Meyer. Support Vector Machines. The Interface to libsvm in package e1071. URL: https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
  7. Hastie, T., Tibshirani, R., Friedman, J., ‘The Elements of Statistical Learning’ Data Mining, Inference, and Prediction.
  8. Huang, W., Nakamori, Y., Wang, S.-Y., 2005. ‘Forecasting stock market movement direction with support vector machine’ Comput. Oper. Res 32 (10), 2513–2522.
  9. Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S., 2004. ‘Credit rating analysis with support vector machines and neural networks: A market comparative study’ Decis. Support Syst. 37 (4), 543–558.
  10. Huerta, R., Corbacho, F., Elkan, C., 2013. ‘Nonlinear support vector machines can systematically identify stocks with high and low future returns’ IOS Press. Algorithmic Finance 2, (45–58).
  11. Huffman, S., Moll, C., 2011. ‘The impact of asymmetry on expected stock returns: An investigation of alternative risk measures’ Algorithmic Financ 1 (2), 79–93.
  12. James, G., Witten, D., Hastie, T., Tibshirani, R., ‘An Introduction to Statistical Learning with Applications in R’.
  13. Jegadeesh, N., Titman, S., 2012. ‘Returns to buying winners and selling losers: Implications for stock market efficiency’ J Financ. 48 (1), 65–91.
  14. Joachims, T. 1998. ‘Text categorization with Support Vector Machines: Learning with many relevant features. European Conference on Machine Learning ECML’ 1998: Machine Learning: ECML-98 pp 137–142.
  15. Kim, K., 2003. ‘Financial time series forecasting using support vector machines. Neurocomputing’ 55 (1), 307–319.
  16. Kość K., Sakowski P., Ślepaczuk R., 2018,Momentum and Contrarian Effects on the Cryptocurrency Market Physica A 523, 691–701, https://www.sciencedirect.com/science/article/pii/S037843711930216X?dgcid=author
  17. Meyer D., Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Package ‘e1071’. URL: https://cran.r-project.org/web/packages/e1071/e1071.pdf
  18. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B., 2001. ‘An introduction to kernel-based learning algorithms’ IEEE Neural Network 12 (2), 181–201.
  19. Package “TTR”. URL: https://cran.r-project.org/web/packages/TTR/TTR.pdf
  20. Performance Analytics in R. URL: https://cran.r-project.org/web/packages/PerformanceAnalytics/vignettes/portfolio_returns.pdf
  21. Pistole, T.C. ‘Comparison of three technical trading methods vs. buy-and-hold for the S&P 500 market. Graduate Student of Finance’, University of Houston – Victoria. URL: http://swdsi.org/swdsi2010/SW2010_Preceedings/papers/PA153.pdf
  22. Rouwenhorst, K., 2002. ‘International momentum strategies’ J. Financ. 53 (1), 267–284.
  23. Sewell, M., 2010. ‘The Application of Intelligent Systems to Financial Time Series Analysis, PhD thesis, PhD dissertation, Department of Computer Science’, University College London University of London.
  24. Ślepaczuk R., Sakowski P., Zakrzewski G., 2018, Investment strategies beating the market. What can we squeeze from the market? eFinanse Vol. 14, no. 4, s. 36-55, https://e-finanse.com/current-issue/?number=59&id=421
  25. Tay, F., Cao, L., 2001. ‘Application of support vector machines in financial time series forecasting’ Omega 29 (4), 309–317.
  26. Tay, F., Cao, L., 2002. ‘Modified support vector machines in financial time series forecasting’ Neurocomputing 48 (1), 847–861.
  27. Van Gestel, T., Suykens, J., Baestaens, D., Lambrechts, A., Lanckriet, G., Vandaele, B., et. hal., 2001. ‘Financial time series prediction using least squares support vector machines within the evidence framework’ Neural Netw., IEEE Trans 12 (4), 809–821.
  28. Vapnik, V., 1999. ‘The Nature of Statistical Learning Theory’ Springer, Heidelberg, Germany.
DOI: https://doi.org/10.1515/ceej-2018-0022 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 186 - 205
Published on: Aug 7, 2019
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Robert Ślepaczuk, Maryna Zenkova, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.