Have a personal or library account? Click to login
Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy Cover

Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy

Open Access
|Dec 2017

References

  1. 1. C. Mihl, W. R. Dassen, and H. Kuipers, Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes, Neth. Heart J., vol. 16, pp. 129-133, 2008.10.1007/BF03086131230046618427637
  2. 2. V. Kumar, A. K. Abbas, and N. Fausto, Robbins and Cotran Pathologic Basis of Disease. Philadelphia: Elsevier Saunders, 2005.
  3. 3. J. Ross Jr., Dilated cardiomyopathy: concepts derived from gene deficient and transgenic animal models, Circ. J., vol. 66, pp. 219-224, 2002.10.1253/circj.66.21911922267
  4. 4. E. Berberoglu, H. O. Solmaz, and S. Goktepe, Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Eur. J. Mech. A/Solids, vol. 48, pp. 60-73, 2014.10.1016/j.euromechsol.2014.02.021
  5. 5. S. Goktepe, O. J. Abilez, K. K. Parker, and E. Kuhl, A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis, J. Theor. Biol., vol. 265, pp. 433-442, 2010.10.1016/j.jtbi.2010.04.02320447409
  6. 6. R. C. Kerckhoffs, J. Omens, and A. D. McCulloch, A single strainbased growth law predicts concentric and eccentric cardiac growth during pressure and volume overload, Mech. Res. Commun., vol. 42, pp. 40-50, 2012.10.1016/j.mechrescom.2011.11.004335880122639476
  7. 7. L. C. Lee, J. Sundnes, M. Genet, J. F. Wenk, and S. T. Wall, An integrated electromechanicalgrowth heart model for simulating cardiac therapies, Biomech. Model. Mechanobiol., vol. 15, pp. 791-803, 2016.10.1007/s10237-015-0723-826376641
  8. 8. L. B. Katsnelson, N. A. Vikulova, A. G. Kursanov, O. E. Solovyova, and V. S. Markhasin, Electromechanical coupling in a onedimensional model of heart muscle fiber, Russian J. Numer. Anal. Math. Model., vol. 29, pp. 1-13, 2014.10.1515/rnam-2014-0022
  9. 9. N. H. Kuijpers, H. M. ten Eikelder, P. H. Bovendeerd, S. Verheule, T. Arts, and P. A. Hilbers, Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics, Am. J. Physiol. Heart Circ. Physiol., vol. 292, pp. H2832-H2853, 2007.10.1152/ajpheart.00923.200617277026
  10. 10. M. I. Noble, T. E. Bowen, and L. L. Hefner, Forcevelocity relationship of cat cardiac muscle, studied by isotonic and quickrelease techniques, Circ. Res., vol. 24, pp. 821-833, 1969.10.1161/01.RES.24.6.821
  11. 11. N. A. Vikulova, L. B. Katsnelson, A. G. Kursanov, O. Solovyova, and V. S. Markhasin, Mechanoelectric feedback in onedimensional model of myocardium, J. Math. Biol., vol. 73, pp. 335-366, 2016.10.1007/s00285-015-0953-526687545
  12. 12. S. A. Niederer and N. P. Smith, An improved numerical method for strong coupling of excitation and contraction models in the heart, Prog. Biophys. Mol. Biol., vol. 96, pp. 90-111, 2008.10.1016/j.pbiomolbio.2007.08.001
  13. 13. J. P. Whiteley, M. J. Bishop, and D. J. Gavaghan, Soft tissue modelling of cardiac fibres for use in coupled mechanoelectric simulations, Bull. Math. Biol., vol. 69, pp. 2199-2225, 2007.
  14. 14. E. H. Sonnenblick, Forcevelocity relations in mammalian heart muscle, Am. J. Physiol., vol. 202, pp. 931-939, 1962.10.1152/ajplegacy.1962.202.5.931
  15. 15. P. Colli Franzone, L. F. Pavarino, and S. Scacchi, Biolectrical e_ects of mechanical feedbacks in a strongly coupled cardiac electromechanical model, Math. Mod. Meth. Appl. S., vol. 26, pp. 27-57, 2016.10.1142/S0218202516500020
  16. 16. P. Kohl, F. Sachs, and M. R. Franz, Cardiac Mechanoelectric Coupling & Arrhythmias. New York: Oxford University Press, 2011.10.1093/med/9780199570164.001.0001
  17. 17. M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., vol. 85, pp. 501-522, 2004.10.1016/j.pbiomolbio.2004.01.016
  18. 18. A. V. Panfilov, R. H. Keldermann, and M. P. Nash, Selforganized pacemakers in a coupled reactiondiffusionmechanics system, Phys. Rev. Lett., vol. 95, p. 258104, 2005.
  19. 19. G. A. Holzapfel, Nonlinear Solid Mechanics: a Continuum Approach for Engineering. Chichester: John Wiley & Sons, 2000.
  20. 20. E. K. Rodriguez, A. Hoger, and A. D. McCulloch, Stressdependent finite growth in soft elastic tissues, J. Biomech., vol. 27, pp. 455-467, 1994.10.1016/0021-9290(94)90021-3
  21. 21. D. Ambrosi, G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati, Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, vol. 59, pp. 863-883, 2011.10.1016/j.jmps.2010.12.011308306521532929
  22. 22. P. Pathmanathan and J. P. Whiteley, A numerical method for cardiac mechanoelectric simulations, Ann. Biomed. Eng., vol. 37, pp. 860-873, 2009.10.1007/s10439-009-9663-819263223
  23. 23. H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Grifith, R. W. Ogden, and T. J. Wang, Structurebased finite strain modelling of the human left ventricle in diastole, Int. J. Numer. Method. Biomed. Eng., vol. 29, pp. 83-103, 2013.10.1002/cnm.249723293070
  24. 24. M. K. Rausch, A. Dam, S. G> 1 2ktepe, O. J. Abilez, and E. Kuhl, Computational modeling of growth: systemic and pulmonary hypertension in the heart, Biomech. Model. Mechanobiol., vol. 10, pp. 799-811, 2011.10.1007/s10237-010-0275-x323579821188611
  25. 25. S. Land, S. A. Niederer, J. M. Aronsen, E. K. Espe, L. Zhang, W. E. Louch, I. Sjaastad, O. M. Sejersted, and N. P. Smith, An analysis of deformationdependent electromechanical coupling in the mouse heart, J. Physiol., vol. 590, pp. 4553-4569, 2012.
  26. 26. G. M. Faber and Y. Rudy, Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study, Biophys. J., vol. 78, pp. 2392-2404, 2000.
  27. 27. P. Colli Franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. Biosci., vol. 197, pp. 35-66, 2005.10.1016/j.mbs.2005.04.00316009380
  28. 28. P. Colli Franzone, L. F. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophysiology. Cham: Springer, 2014.10.1007/978-3-319-04801-7
  29. 29. C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., vol. 21, pp. 1-77, 1993.
  30. 30. B. J. Roth, The electrical potential produced by a strand of cardiac muscle: a bidomain analysis, Ann. Biomed. Eng., vol. 16, pp. 609-637, 1988.10.1007/BF023680183228221
  31. 31. R. M. Shaw and Y. Rudy, Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and Ltype calcium currents during reduced excitability and decreased gap junction coupling, Circ. Res., vol. 81, pp. 727-741, 1997.10.1161/01.RES.81.5.727
  32. 32. S. A. Niederer and N. P. Smith, A mathematical model of the slow force response to stretch in rat ventricular myocytes, Biophys. J., vol. 92, pp. 4030-4044, 2007.
  33. 33. W. Kroon, T. Delhaas, T. Arts, and P. H. Bovendeerd, Computational modeling of volumetric tissue growth: application to the cardiac left ventricle, Biomech. Model. Mechanobiol., vol. 8, pp. 301-309, 2009.10.1007/s10237-008-0136-z18758835
  34. 34. S. Rush and H. Larsen, A practical algorithm for solving dynamic membrane equations, IEEE Trans. Biomed. Eng., vol. 25, pp. 389-392, 1978.10.1109/TBME.1978.326270689699
Language: English
Page range: 185 - 209
Submitted on: Jan 13, 2017
Accepted on: Aug 2, 2017
Published on: Dec 22, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Fabrizio Del Bianco, Piero Colli Franzone, Simone Scacchi, Lorenzo Fassina, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.