Have a personal or library account? Click to login
Electrostatic field in terms of geometric curvature in membrane MEMS devices Cover

Electrostatic field in terms of geometric curvature in membrane MEMS devices

Open Access
|Jul 2017

References

  1. 1. H.C. Nathanson and W.E. Newell and R.A. Wickstrom and J.R. Lewis, The Resonant Gate Transistor, IEEE Transaction on Electron Devices, vol. 14, pp. 117-133, 1964.10.1109/T-ED.1967.15912
  2. 2. M. Huja and M. Husak, Thermal Microactuators for Optical Purpose, Coding and Computing, pp. 137-142, 2001.
  3. 3. X. Yang and Y.C. Tai and C.M. Ho, Micro Bellow Actuators, Trans- ducers'97, pp. 45-48, 1997.
  4. 4. S. Bhansali and A.L. Zhang and R.B. Zmood and P. Jones and D.K. Sood, Prototype Feedback Controlled Bi-Directional Actuation System for MEMS Application, Journal Microeletromechanic Systems, vol. 9, pp. 245-251, 2000.10.1109/84.846705
  5. 5. A. Ludwig and E. Quandt, Giant Magnetostrictive Thin Films for Application in Microelectromechanical Systems, Journal of Applied Physics, vol. 87, pp. 4691-4695, 2000.
  6. 6. M. Elwenspoek and R. Wiegerink, Micromechanical Sensors. 2001.10.1007/978-3-662-04321-9
  7. 7. S.D. Senturia, Microsystem Design. Kluwer Academic Publisher, 2001.10.1007/b117574
  8. 8. E. Schaffer and T Thurn-Albrecht and T.P. Russell and U. Steiner, Electrically Induced Structure Formation and Pattern Transfer, Nature, vol. 403, pp. 518-524, 2001.10.1038/35002540
  9. 9. D. Bernstein and P. Guidotti and J. Pelesko, Analytical and Numerical Analysis of Electrostatically Actuated MEMS Devices, in Proceedings of MSM 2000, pp. 489-492, 2000.
  10. 10. J.A. Pelesko and X.Y. Chen, Electrostatic Deections of Circular Elastic Membranes, Journal of Electrostatics, vol. 57, no. 1, pp. 1-12, 2003.10.1016/S0304-3886(02)00073-6
  11. 11. M.O. Hasse and M.A. Hawwa and H.M.Alqahtani, Modeling the Electrostatic Deection of a MEMS Multilayers Based Actuator, Mathemat- ical Problems in Engineering, vol. 2013, 2013.10.1155/2013/959232
  12. 12. AA.VV., MEMS for Biomedical Application. Elsevier, 2012.
  13. 13. A. Folch, Introduction to Bio-MEMS. Boca Raton, 2013.
  14. 14. P. Das Payel and M. Kanoria, Magneto-Thermo-Elastic Waves in an Infinite Perfectly Conducting Elastic Solid with Energy Dissipation, Applied Mathematics and Mechanics, vol. 30, no. 2, pp. 221-228, 2009.10.1007/s10483-009-0209-6
  15. 15. P. Di Barba and A. Lorenzi, A Magneto-Thermo-Elastic Identification Problem with a Moving Boundary in a Micro-Device, Milan Journal of Mathematics, vol. 81, no. 2, pp. 347-383, 2013.10.1007/s00032-013-0209-z
  16. 16. R. Selvamani and P. Pommusamy, Wave Propagation in a Transversely Isotropic Magneto-Electro-Elastic Solid Bar Immersed in an Inviscid Fluid, Journal of the Egyptian Mathematical Society, vol. 24, pp. 92-99, 2016.10.1016/j.joems.2014.06.016
  17. 17. P. Di Barba and S. Wiak, Evolutionary Computing and Optimal Design of MEMS, IEEE Trans Mechatronics, vol. 20, no. 4, pp. 1660-1667, 2015.
  18. 18. P. Di Barba and M.E. Mognaschi and P. Venini and S. Wiak, Biogeography-Inspired Multiobjective Optimisation for Helping MEMS Synthesis, Archives of Electrical Engineering, in press.
  19. 19. D. Cassani and L. Fattorusso and A. Tarsia, Nonlocal Singular Problems and Application to MEMS, in Proceedings of WCE 201, 2013.
  20. 20. D. Cassani and L. Fattorusso and A. Tarsia, Nonlocal Dynamic Problems with Singular Nonlinearities and Application to MEMS, Progress in Nonlinear Differential Equations and their Applications, vol. 85, pp. 185-206, 2014.10.1007/978-3-319-04214-5_11
  21. 21. D. Cassani and A. Tarsia, Periodic Solutions to Nonlocal MEMS Equations, Discrete and Continuousd Dynamical Systems - Serie S, vol. 9, no. 3, pp. 631-642, 2016.10.3934/dcdss.2016017
  22. 22. S.E. Lyshevski, MEMS and NEMS: Systems, Devices and Structures. Boca Raton, 2002.
  23. 23. D. Cassani and M. d'O and N. Ghoussoub, On a Fourth Order Elliptic Problem with a Singular Nonlinearity, Nonlinear Studies, vol. 9, pp. 189-209, 2009.10.1515/ans-2009-0109
  24. 24. D. Cassani and B. Kaltenbacher and A. Lorenzi, Direct and Inverse Problem Related to MEMS, Inverse Problems, vol. 25, 2009.10.1088/0266-5611/25/10/105002
  25. 25. C. Cowan and P. Esposito and N. Ghoussoub and Mordifam, The Critical Dimension for a Fourth Order Elliptic Problem with Singular Nonlinearity, Arch. Ration. Mech. Anal., vol. 198, pp. 763-787, 2010.10.1007/s00205-010-0367-x
  26. 26. C. Cowan and P. Esposito and N. Ghoussoub, Regularity of Extremal Solutions in Fourth Order Nonlinear Eigenvalue Problems on General Domains, Discrete and Continuous Dynamical Systems, vol. 28, no. 2, pp. 1-19, 2010.10.3934/dcds.2010.28.1033
  27. 27. P. Laurencot and C.Walker, A Stationary Free Boundary Problem Modeling Electrostatic MEMS, Arch. Ration. Mech. Anal., vol. 207, no. 1, pp. 139-158, 2013.10.1007/s00205-012-0559-7
  28. 28. J.A. Pelesko and D.H. Bernstein, Modeling MEMS and NEMS. Chapman & Hall, 2003.10.1201/9781420035292
  29. 29. J.D. Jackson, Classical Electrodynamics. John Wiley, 1975.
  30. 30. G. Barozzi and F. Gasparini, Fondamenti di Elettrotecnica: Elettromag- netismo. UTET, 1989.
  31. 31. P.B. Bayley and L.F. Shampine and P.E. Waltmman, Nonlinear Two Point Boundary Value Problems. Academic Press, 1968.
Language: English
Page range: 165 - 184
Submitted on: May 7, 2017
Accepted on: Jun 16, 2017
Published on: Jul 20, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Paolo Di Barba, Luisa Fattorusso, Mario Versaci, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.