Have a personal or library account? Click to login
The Godunov method for a 2-phase model Cover

References

  1. 1. R. M. Colombo, F. Marcellini, and M. Rascle, A 2-phase trafic model based on a speed bound, SIAM J. Appl. Math., vol. 70, no. 7, pp. 2652-2666, 2010.
  2. 2. S. Blandin, D. Work, P. Goatin, B. Piccoli, and A. Bayen, A general phase transition model for vehicular trafic, SIAM J. Appl. Math., vol. 71, no. 1, pp. 107-127, 2011.10.1137/090754467
  3. 3. M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of trafic ow on long crowded roads, Proc. Roy. Soc. London. Ser. A., vol. 229, pp. 317-345, 1955.10.1098/rspa.1955.0089
  4. 4. P. I. Richards, Shock waves on the highway, Operations Res., vol. 4, pp. 42-51, 1956.10.1287/opre.4.1.42
  5. 5. B. S. Kerner, The physics of trafic: empirical freeway pattern features, engineering applications, and theory. Springer, 2012.
  6. 6. R. M. Colombo, Hyperbolic phase transitions in trafic ow., SIAM J. Appl. Math., vol. 63, no. 2, pp. 708-721, 2002.10.1137/S0036139901393184
  7. 7. R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in analysis, Vol. I, II (Berlin, 2001), pp. 1279-1287, World Sci. Publ., River Edge, NJ, 2003.
  8. 8. R. M. Colombo, P. Goatin, and F. S. Priuli, Global well posedness of trafic ow models with phase transitions, Nonlinear Anal., vol. 66, no. 11, pp. 2413-2426, 2007.
  9. 9. P. Goatin, The Aw-Rascle vehicular trafic ow model with phase transitions, Math. Comput. Modelling, vol. 44, no. 3-4, pp. 287-303, 2006.10.1016/j.mcm.2006.01.016
  10. 10. J. P. Lebacque, X. Louis, S. Mammar, B. Schnetzlera, and H. Haj-Salem, Modélisation du trafic autoroutier au second ordre, Comptes Rendus Mathematique, vol. 346, pp. 1203-1206, November 2008.
  11. 11. F. Marcellini, Free-congested and micro-macro descriptions of trafic ow, Discrete Contin. Dyn. Syst. Ser. S, vol. 7, no. 3, pp. 543-556, 2014.10.3934/dcdss.2014.7.543
  12. 12. S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), vol. 47 (89), pp. 271-306, 1959.
  13. 13. R. J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511791253
  14. 14. C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in trafic ow modeling, Interfaces Free Bound., vol. 10, no. 2, pp. 197-221, 2008.10.4171/IFB/186
  15. 15. X. Zhong, T. Y. Hou, and P. G. LeFloch, Computational methods for propagating phase boundaries, J. Comput. Phys., vol. 124, no. 1, pp. 192-216, 1996.10.1006/jcph.1996.0053
  16. 16. R. J. LeVeque, Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich, Basel: Birkhäuser Verlag, second ed., 1992.10.1007/978-3-0348-8629-1_3
  17. 17. R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop., vol. 11, pp. 215-234, 1967.10.1147/rd.112.0215
Language: English
Page range: 149 - 164
Submitted on: Dec 19, 2016
Accepted on: Jun 16, 2017
Published on: Jul 20, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Mauro Garavello, Francesca Marcellini, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.