Have a personal or library account? Click to login
Integral equations for free-molecule ow in MEMS: recent advancements Cover

Integral equations for free-molecule ow in MEMS: recent advancements

Open Access
|Mar 2017

References

  1. 1. C. Cercignani, The Boltzmann equation and its applications, Springer, 198810.1007/978-1-4612-1039-9
  2. 2. S. Chapman and T. Cowling, The mathematical theory of non-uniform gases, Cambridge Univeristy Press, 1960
  3. 3. G.A. Bird, Molecular gas dynamics and the direct simulation of gas ows, Clarendon Press, 199410.1093/oso/9780198561958.001.0001
  4. 4. M. Gad-el-Hak, The uid mechanics of microdevices - the Freeman scholar lecture, J. Fluids Eng., vol. 121, pp. 5-33, 199910.1115/1.2822013
  5. 5. G:E. Karniadakis and A. Beskok, Micro flows, fundamentals and simu- lation, Springer, 200210.1115/1.1483361
  6. 6. M.M.R. Williams, A review of the rarefied gas dynamics theory associated with some classical problems in ow and heat transfer, Z. Angew. Math. Phys., vol. 52, pp. 500-516, 200110.1007/PL00001558
  7. 7. A. Frangi, A. Ghisi, L. Coronato, On a deterministic approach for the evaluation of gas damping in inertial MEMS in the free-molecule regime, Sensor & Actuators A, vol. 49, pp. 21-28, 200910.1016/j.sna.2008.09.018
  8. 8. A. Frangi, BEM technique for free-molecule flows in high frequency MEMS resonators, Engineering Analysis with Boundary Elements, vol. 33, pp. 493-498, 200910.1016/j.enganabound.2008.08.012
  9. 9. M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, 1964
  10. 10. J. Hughes, A. Van Dam, M. Mcguire, D. Sklar, J. Foley, S. Feiner and K. Akeley, Computer Graphics: principles and practice (3rd edition), Addison-Wesley, 2013
  11. 11. J. Bittner and P. Wonka, Visibility in computer graphics, Environment and Planning B: Planning and Design, vol. 30, pp. 729-755, 200310.1068/b2957
  12. 12. S. Kumar, D. Manocha, W. Garrett and M. Lin, Hierarchical back-face computation, Computer and Graphics, vol. 23, pp. 681-692, 199910.1016/S0097-8493(99)00091-6
  13. 13. C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309-1331, 200910.1002/nme.2579
  14. 14. P. Bergeron, A general version of Crows shadow volumes, IEEE Com- puter Graphics and Applications, vol. 6, no. 9, pp. 17-28, 198610.1109/MCG.1986.276543
  15. 15. S. Idelsohn, N. Calvo and E. Oñate, Polyhedrization of an arbitrary 3D point set, Comput.Methods Appl. Mech. Engrg., vol. 192, pp. 2649-2667, 200310.1016/S0045-7825(03)00298-6
  16. 16. P. Pacheco, An introduction to parallel programming, Morgan Kaufamann, 2011
  17. 17. C. Cercignani, A. Frangi, S. Lorenzani, B. Vigna, BEM approaches and simplified kinetic models for the analysis of damping in deformable MEMS, Engineering Analysis with Boundary Elements, vol. 31, pp. 451-457, 200710.1016/j.enganabound.2006.11.010
  18. 18. A. Frangi, P. Fedeli, G. Laghi, G. Langfelder and G. Gattere, Near vacuum gas damping in MEMS: numerical modeling and experimental validation, IEEE JMEMS, vol. 25, no. 5, pp. 890-899, 201610.1109/JMEMS.2016.2584699
Language: English
Page range: 67 - 80
Submitted on: Dec 20, 2016
Accepted on: Mar 21, 2017
Published on: Mar 22, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Patrick Fedeli, Attilio Frangi, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.