Have a personal or library account? Click to login
A forecasting performance comparison of dynamic factor models based on static and dynamic methods Cover

A forecasting performance comparison of dynamic factor models based on static and dynamic methods

Open Access
|Mar 2017

References

  1. 1. J. H. Stock and M. W. Watson, Forecasting using principal components from a large number of predictors, Journal of the American Statistical Association, vol. 97, no. 460, pp. 1167–1179, 2002a.10.1198/016214502388618960
  2. 2. J. H. Stock and M. W. Watson, Macroeconomic forecasting using diffusion indexes, Journal of Business & Economic Statistics, vol. 20, no. 2, pp. 147–162, 2002b.10.1198/073500102317351921
  3. 3. M. Forni, M. Hallin, M. Lippi, and L. Reichlin, The generalized dynamic factor model: Identification and estimation, Review of Economics and Statistics, vol. 82, no. 4, pp. 540 – 554, 2000.10.1162/003465300559037
  4. 4. M. Forni, M. Hallin, M. Lippi, and L. Reichlin, The generalized dynamic factor model: One-sided estimation and forecasting, Journal of the American Statistical Association, vol. 100, pp. 830 – 840, 2005.10.1198/016214504000002050
  5. 5. M. Forni, M. Hallin, M. Lippi, and P. Zaffaroni, Dynamic factor model with infinite dimensional factor space: representation, Journal of Econometrics, vol. 185, pp. 359–371, 2015.10.1016/j.jeconom.2013.10.017
  6. 6. M. Forni, M. Hallin, M. Lippi, and P. Zaffaroni, Dynamic factor model with infinite dimensional factor space: Asymptotic analysis, tech. rep., EIEF Working Paper 2016/07, Einaudi Institute for Economics and Finance, 2016.
  7. 7. J. Boivin and S. Ng, Understanding and comparing factor-based forecasts, International Journal of Central Banking, vol. 1, no. 3, pp. 117 – 151, 2005.10.3386/w11285
  8. 8. A. D’Agostino and D. Giannone, Comparing alternative predictors based on large-panel factor models, Oxford bulletin of economics and statistics, vol. 74, no. 2, pp. 306–326, 2012.10.1111/j.1468-0084.2011.00642.x
  9. 9. C. Schumacher, Forecasting german gdp using alternative factor models based on large datasets, Journal of Forecasting, vol. 26, no. 4, pp. 271– 302, 2007.10.1002/for.1026
  10. 10. A. H. den Reijer et al., Forecasting dutch gdp using large scale factor models, tech. rep., Netherlands Central Bank, Research Department, 2005.
  11. 11. M. Forni, A. Giovannelli, M. Lippi, and S. Soccorsi, Dynamic factor model with in_nite dimensional factor space: forecasting, tech. rep., CEPR Discussion Paper No. DP11161, 2016.
  12. 12. M. Forni and M. Lippi, The generalized dynamic factor model: representation theory, Econometric theory, vol. 17, no. 06, pp. 1113–1141, 2001.
  13. 13. M. Hallin and M. Lippi, Factor models in high-dimensional time series: A time-domain approach, Stochastic Processes and their Applications, vol. 123, no. 7, pp. 2678–2695, 2013.
  14. 14. M. Forni, D. Giannone, M. Lippi, and L. Reichlin, Opening the black box: Structural factor models with large cross sections, Econometric Theory, vol. 25, no. 05, pp. 1319–1347, 2009.
  15. 15. R. Giacomini and H. White, Tests of conditional predictive ability, Econometrica, vol. 74, no. 6, pp. 1545–1578, 2006.
  16. 16. R. Giacomini and B. Rossi, Forecast comparisons in unstable environments, Journal of Applied Econometrics, vol. 25, no. 4, pp. 595–620, 2010.10.1002/jae.1177
Language: English
Page range: 43 - 66
Submitted on: Dec 14, 2016
Accepted on: Feb 16, 2017
Published on: Mar 22, 2017
Published by: Italian Society for Applied and Industrial Mathemathics
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Fabio Della Marra, published by Italian Society for Applied and Industrial Mathemathics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.