Have a personal or library account? Click to login
IFSs consisting of generalized convex contractions Cover

References

  1. [1] M.A. Alghamdia, S.H. Alnafeia, S. Radenović, N. Shahzad, Fixed point theorems for convex contraction mappings on cone metric spaces, Math. Comput. Modelling, 54 (2011), 2020{2026.10.1016/j.mcm.2011.05.010
  2. [2] Sz. András, Fiber Picard operators and convex contractions, Fixed Point Theory, 4 (2003), 121{129.
  3. [3] Sz. András, Ecuaţii integrale Fredholm-Volterra, Editura Didactică şi Pe- dagogică, Bucureşti, 2005.
  4. [4] J. Andres and M. Rypka, Multivalued fractals and hyperfractals, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), DOI 10.1142/S02181127412500095.10.1142/S02181127412500095
  5. [5] M. Barnsley, K. Leśniak and M. Rypka, Chaos game for IFSs on topological spaces, J. Math. Anal. Appl. 435, (2016), 1458-1466.10.1016/j.jmaa.2015.11.022
  6. [6] M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377.10.2478/s11533-010-0009-4
  7. [7] C. Chifu and A. Petruşel, Multivalued fractals and generalized multivalued contractions, Chaos Solitons Fractals, 36 (2008), 203-210.10.1016/j.chaos.2006.06.027
  8. [8] I. Chiţescu, H. Georgescu, R. Miculescu, Approximation of infinite dimensional fractals generated by integral equations, J. Comput. Appl. Math., 234 (2-10) 1417{1425.10.1016/j.cam.2010.02.017
  9. [9] V. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex nonexpansive mappings (I), Libertas Math., 1 (1981), 151-164.
  10. [10] V. Istrăţescu, Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters - I, Annali di Mat. Pura Appl., 130 (1982), 89{104.10.1007/BF01761490
  11. [11] V. Istrăţscu, Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters - II, Annali di Mat. Pura Appl., 134 (1983), 327-362.10.1007/BF01773511
  12. [12] V. Ghorbanian, S. Rezapour and N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl., 63 (2012), 1361-1368.10.1016/j.camwa.2011.12.071
  13. [13] G. Gwόźdź- Lukowska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356 (2009), 453-463.10.1016/j.jmaa.2009.03.023
  14. [14] N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi, Discussions on recent results for α-ψ-contractive mappings, Abstr. Appl. Anal., vol. 2014, Article ID 456482, 13 pages, 2014.
  15. [15] M. Klimek and M. Kosek, Generalized iterated function systems, multi- functions and Cantor sets, Ann. Polon. Math., 96 (2009), 25-41.10.4064/ap96-1-2
  16. [16] A. Latif, W. Sintunavarat and A. Ninsri, Approximate fixed point theorems for partial generalized convex contraction mappings in α-complete metric spaces, Taiwanese J. Math., 19 (2015), 315-333.10.11650/tjm.19.2015.4746
  17. [17] K. Leşniak, Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 52 (2004), 1-8.10.4064/ba52-1-1
  18. [18] E. Llorens-Fuster, A. Petruşel and J.-C. Yao, Iterated function systems and well posedness, Chaos Solitons Fractals, 41 (2009), 1561-1568.10.1016/j.chaos.2008.06.019
  19. [19] L. Máté, The Hutchinson-Barnsley theory for certain noncontraction mappings, Period. Math. Hungar., 27 (1993), 21-33.10.1007/BF01877158
  20. [20] M. A. Miandaragh, M. Postolache and S. Rezapour, Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., vol. 2013, article 255, 2013.10.1186/1687-1812-2013-255
  21. [21] R. Miculescu, Generalized iterated function systems with place dependent probabilities, Acta Appl. Math., 130 (2014),135{150.10.1007/s10440-013-9841-4
  22. [22] R. Miculescu and A. Mihail, On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl., 422 (2015), 265-271.10.1016/j.jmaa.2014.08.008
  23. [23] R. Miculescu and A. Mihail, Reich-type iterated function systems, J. Fixed Point Theory Appl., 18 (2016), 285-296.10.1007/s11784-015-0264-x
  24. [24] R. Miculescu and A. Mihail, A generalization of Istrăţescu's fixed point theorem for convex contractions, in print, Fixed Point Theory.
  25. [25] A. Mihail and R. Miculescu, Applications of fixed point theorems in the theory of generalized IFS, Fixed Point Theory Appl., 2008, Art. ID 312876, 11 pp.10.1155/2008/312876
  26. [26] A. Mihail and R. Miculescu, The shift space for an infinite iterated function system, Math. Rep. (Bucur.), 61 (2009), 21-31.
  27. [27] A. Mihail and R. Miculescu, Generalized IFSs on noncompact spaces, Fixed Point Theory Appl., 2010, Art. ID 584215, 15 pp.10.1155/2010/584215
  28. [28] A. Mihail, A topological version of iterated function systems, An. Ştiinţă . Univ. Al. I. Cuza, Iaşi, (S.N.), Matematica, 58 (2012) 105-120.
  29. [29] V. Mureşan and A. Mureşan, On the theory of fixed point theorems for convex contraction mappings, Carpathian J. Math., 31 (2015), 365-371.10.37193/CJM.2015.03.13
  30. [30] A. Petruşel, Iterated function system of locally contractive operators, Rev. Anal. Numér. Théor. Approx., 33 (2004), 215-219.10.33993/jnaat332-779
  31. [31] N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl., 2013, 2013:277.10.1186/1687-1812-2013-277
  32. [32] N. A. Secelean, Generalized iterated function systems on the space l1(X), J. Math. Anal. Appl., 410 (2014), 847-458.10.1016/j.jmaa.2013.09.007
  33. [33] F. Strobin and J. Swaczyna, On a certain generalization of the iterated function systems, Bull. Australian Math. Soc., 87 (2013), 37-54.10.1017/S0004972712000500
  34. [34] F. Strobin, Attractors of generalized IFSs that are not attractors of IFSs, J. Math. Anal. Appl., 422 (2015), 99-108.10.1016/j.jmaa.2014.08.029
DOI: https://doi.org/10.1515/auom-2017-0007 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 77 - 86
Submitted on: Mar 12, 2016
Accepted on: Apr 28, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Flavian Georgescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.