Have a personal or library account? Click to login
IFSs consisting of generalized convex contractions Cover

Abstract

In this paper we introduce the concept of iterated function system consisting of generalized convex contractions. More precisely, given n ∈ ℕ*, an iterated function system consisting of generalized convex contractions on a complete metric space (X; d) is given by a finite family of continuous functions (fi)i ∈I , fi : X → X, having the property that for every ω ∈ λn(I) there exists a family of positive numbers (aω;υ)υ∈Vn(I) such that:

x; y ∈ X. Here λn(I) represents the family of words with n letters from I, Vn(I) designates the family of words having at most n - 1 letters from I, while, if ω1 = ω1ω2 ... ωp, by fω we mean fω1 ⃘fω2 ⃘... ⃘ fωp. Denoting such a system by S = ((X; d); n; (fi)i∈I), one can consider the function FS : K(X) → K(X) described by , for all B ∈ K(X), where K(X) means the set of non-empty compact subsets of X. Our main result states that FS is a Picard operator for every iterated function system consisting of generalized convex contractions S.

DOI: https://doi.org/10.1515/auom-2017-0007 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 77 - 86
Submitted on: Mar 12, 2016
Accepted on: Apr 28, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Flavian Georgescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.