Have a personal or library account? Click to login
Walrasian economy and some properties of convexly compact sets Cover

References

  1. [1] T. B. Andersen; E. T. Poulsen: On semi-extremal subsets of convex sets. Math. Scand. 23 (1968) 167-168.10.7146/math.scand.a-10906
  2. [2] K. J. Arrow; G. Debreu: Existence of an equilibrium for a competitive economy. Econometrica 22 (1954), 265-290.10.2307/1907353
  3. [3] Border, K. C. Functional analytic tools for expected utility theory. Positive operators, Riesz spaces, and economics (Pasadena, CA, 1990), 69-88, Springer, Berlin, 1991.10.1007/978-3-642-58199-1_4
  4. [4] A. Mas-Colell, W. R. Zame: Equilibrium theory in infinite-dimensional spaces. Handbook of mathematical economics, Vol. IV, 1835-1898, Handbooks in Economics, 1, North-Holland, Amsterdam, 1991.10.1016/S1573-4382(05)80009-8
  5. [5] L. W. McKenzie: The classical theorem on existence of competitive equilibrium. Econometrica 49 (1981), 819-841.10.2307/1912505
  6. [6] L. Walras: Élements d'économie politique pure, 4éme édition, Lausanne, Paris, 1900.
  7. [7] G. Žitković Convex compactness and its applications. Math. Financ.
  8. Econ. 3 (2010), 1-12.
DOI: https://doi.org/10.1515/auom-2017-0006 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 69 - 76
Submitted on: Feb 20, 2016
Accepted on: Apr 23, 2016
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Mirela Cristea, Doina Dascălu, Laura Nicoleta Nasta, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.