Have a personal or library account? Click to login
On 2-Absorbing Primary Submodules of Modules over Commutative Rings Cover

References

  1. [1] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36 (2008), 4620{4642.10.1080/00927870802186805
  2. [2] M. M. Ali, Invertiblity of Multiplication Modules III, New Zeland J. Math., 39 (2009), 193-213.
  3. [3] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715{1724.10.1155/S0161171203202180
  4. [4] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686{696.10.1080/00927870701724177
  5. [5] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831{840.
  6. [6] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646{1672.10.1080/00927871003738998
  7. [7] F. Anderson and K. Fuller, Rings and categories of modules. New-York: Springer-Verlag, 1992.10.1007/978-1-4612-4418-9
  8. [8] R. B. Ash, A course in commutative algebra. University of Illinois, 2006.
  9. [9] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417{429.10.1017/S0004972700039344
  10. [10] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39 (2013), 441{452.
  11. [11] A. Badawi, Ü. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163{1173.10.4134/BKMS.2014.51.4.1163
  12. [12] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174{178.10.1016/0021-8693(81)90112-5
  13. [13] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math., 32 (2) (2004), 185{195.
  14. [14] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43{49.10.1081/AGB-200034161
  15. [15] S. Ebrahimi Atani, F. Çallialp and Ü. Tekir, A Short note on the primary submodules of multiplication modules, Inter. J. Algebra, 8 (1) (2007), 381{384.10.12988/ija.2007.07042
  16. [16] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38 (3) (2007), 247{252.10.5556/j.tkjm.38.2007.77
  17. [17] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1988), 755{779.10.1080/00927878808823601
  18. [18] C. Faith, Algebra: Rings, modules and categories I, Springer-Verlag Berlin Heidelberg New York 1973.
  19. [19] R. Gilmer, Multiplicative ideal theory. Queens Papers Pure Appl. Math. 90, Queens University, Kingston (1992).
  20. [20] M. Khoramdel and S. Dolati Pish Hesari, Some notes on Dedekind modules, Hacettepe J. Math. Stat., 40 (2011), 627{634.
  21. [21] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29 (1986), 37{39.10.4153/CMB-1986-006-7
  22. [22] R. L. McCasland and M. E. Moore, Radicals of submodules, Comm. Algebra, 19 (1991), 1327-1341.10.1080/00927879108824205
  23. [23] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24 (2)(1996), 397-412.10.1080/00927879608825576
  24. [24] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012), 913-920.10.1142/S1005386712000776
  25. [25] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223{235.10.1007/BF01187738
  26. [26] A. Yousefian Darani and F. Soheilnia, On 2-absorbing and weakly 2- absorbing submodules, Thai J. Math., 9 (2011), 577-584
  27. [27] A. Yousefian Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun., 17 (2012), 547-557.
DOI: https://doi.org/10.1515/auom-2016-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 335 - 351
Submitted on: Sep 8, 2014
Accepted on: Oct 20, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hojjat Mostafanasab, Ece Yetkin, Ünsal Tekir, Ahmad Yousefian Darani, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.