Have a personal or library account? Click to login
On 2-Absorbing Primary Submodules of Modules over Commutative Rings Cover

Abstract

All rings are commutative with 1 ≠ 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a; b ∈ R and m ∈ M and abm ∈ N, then am ∈ M-rad(N) or bm ∈ M-rad(N) or ab ∈(N :R M). It is shown that a proper submodule N of M is a 2-absorbing primary submodule if and only if whenever I1I2K ⊆ N for some ideals I1; I2 of R and some submodule K of M, then I1I2 ⊆ (N :R M) or I1K ⊆ M-rad(N) or I2K ⊆ M-rad(N). We prove that for a submodule N of an R-module M if M-rad(N) is a prime submodule of M, then N is a 2-absorbing primary submodule of M. If N is a 2-absorbing primary submodule of a finitely generated multiplication R-module M, then (N :R M) is a 2-absorbing primary ideal of R and M-rad(N) is a 2-absorbing submodule of M.

DOI: https://doi.org/10.1515/auom-2016-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 335 - 351
Submitted on: Sep 8, 2014
Accepted on: Oct 20, 2014
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hojjat Mostafanasab, Ece Yetkin, Ünsal Tekir, Ahmad Yousefian Darani, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.