Have a personal or library account? Click to login
Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces Cover

Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces

Open Access
|Sep 2017

References

  1. [1] Matkowski, J: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 62, 344{348 (1997)10.1090/S0002-9939-1977-0436113-5
  2. [2] Gajić, L, Stojaković, M: On mappings with ϕ-contractive iterate at a point on generalized metric spaces. Fixed Point Theory Appl. 2014, 2014:4610.1186/1687-1812-2014-46
  3. [3] Samet, B, Vetro, C, Vetro, F: Remarks on G-metric spaces. Intern. J. Anal. 2013, Article ID 917158 (2013)10.1186/1687-1812-2013-5
  4. [4] Jleli, M, Samet, B: Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012:21010.1186/1687-1812-2012-210
  5. [5] Roldán, A, Martñez-Moreno, J, Roldán, C, Karapñar, E: Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), No. 2, 545{558.10.1186/1687-1812-2014-13
  6. [6] Alsulami, HH, Roldán-Roldán-López-de-Hierro, AF, Karapñar, E, Radenović, S: Some Inevitable Remarks on “Tripled Fixed Point Theorems for Mixed Monotone Kannan Type Contractive Mappings" . J. Appl. Math 2014, Article ID 392301, 7 pages.10.1155/2014/392301
  7. [7] Al-Mezel, SA, Alsulami, HH, Karapñar, E, Roldán-López-de-Hierro, AF: Dis- cussion on “Multidimensional coincidence points" via recent publications. Abstr. Appl. Anal. 2014, Article ID 287492, 13 pages.10.1155/2014/287492
  8. [8] Erhan, İM, Karapñar, E, Roldán-López-de-Hierro, AF, Shahzad, N: Remarks on “Coupled coincidence point results for a generalized compatible pair with applications", Fixed Point Theory Appl., to appear.
  9. [9] Agarwal, RP, Karapñar, E, Roldán-López-de-Hierro, AF: Fixed point theo- rems in quasi-metric spaces and applications to multidimensional fixed point theorems on G-metric spaces. J. Nonlinear Convex Anal., in press.
  10. [10] Bilgili, N, Karapñar, E, Samet, B: Generalized α, ψ- contractive mappings in quasi-metric spaces and related fixed point theorems. J. Ineq. Appl. 2014, 2014:3610.1186/1029-242X-2014-36
  11. [11] Aydi, H, Hadj-Amor, S, Karapñar, E: Some almost generalized ( ψ,ϕ)- contractions in G-metric spaces. Abstr. Appl. Anal. 2013, Article Id: 165420 (2013)10.1155/2013/165420
  12. [12] Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289{297 (2006)
  13. [13] Mustafa, Z, Sims, B: Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009)10.1155/2009/917175
  14. [14] Mustafa, Z: A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Australia, 2005.
  15. [15] Alghamdi, MA, Karapñar,, E: G- β, ψ - contractive type mappings and related fixed point theorems. J. Ineq. Appl. 2013, 2013:7010.1186/1029-242X-2013-70
  16. [16] Alghamdi, MA, Karapñar,, E: G-β,ψ- contractive type mappings in G-metric spaces. Fixed Point Theory Appl. 2013, 2013:12310.1186/1687-1812-2013-123
  17. [17] Agarwal, RP, Karapñar,, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013, 2013:210.1186/1687-1812-2013-2
  18. [18] Agarwal, RP, Karapñar,, E: Further fixed point results on G-metric spaces. Fixed Point Theory Appl. 2013, 2013:15410.1186/1687-1812-2013-154
DOI: https://doi.org/10.1515/auom-2016-0018 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 309 - 333
Submitted on: Oct 29, 2014
Accepted on: Jan 7, 2015
Published on: Sep 21, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Erdal Karapιnar, Antonio-Francisco Roldán-López-de-Hierro, Bessem Samet, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.