Have a personal or library account? Click to login
Inexact Inertial Proximal Algorithm for Maximal Monotone Operators Cover
Open Access
|Apr 2017

References

  1. [1] F. Alvarez, H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria, Control Optim. Calc. Var. 6, (2001) 539-552.10.1051/cocv:2001100
  2. [2] F. Alvarez, H. Attouch, An inertial proximal method for maximal mono- tone operators via discretization of a nonlinear oscillator with damping, Set-valued Anal. 9, (2001) 3-11.10.1023/A:1011253113155
  3. [3] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38, (2000) 1102-1119.10.1137/S0363012998335802
  4. [4] H. Attouch, F. Alvarez, The heavy ball with friction dynamical system for convex constrained minimization problems, Optimization (Namur, 1998), 25-35, Lecture Notes in Econom. and Math. Systems,481, Springer, Berlin, 2000.10.1007/978-3-642-57014-8_2
  5. [5] H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method, I. The continuous dynamical system: Global Exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2, (2000) 1-34.10.1142/S0219199700000025
  6. [6] H. Brézis, P.L. Lions, Produits infinis de résolvantes, Israel J. Math. 29, (1978) 329-345.10.1007/BF02761171
  7. [7] B. Djafari Rouhani, H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137, (2008) 411-417.10.1007/s10957-007-9329-3
  8. [8] M. Edelstein, The construction of an asymptotic center with a fixed -point property, Bull. Amer. Math. Soc. 78, (1972) 206-208.10.1090/S0002-9904-1972-12918-5
  9. [9] F. Jules, P.E. Maingé, Numerical approach to a stationary solution of a second order dissipative dynamical system, Optimization, 51, (2002) 235-255.10.1080/02331930290019404
  10. [10] H. Khatibzadeh, Asymptotic behavior of a discrete nonlinear oscillator with damping dynamical system, Adv. Diérence Equ. 2011, Art. ID 867136, 9 pp.10.1155/2011/867136
  11. [11] H. Khatibzadeh, Some remarks on the proximal point algorithm, J. Optim. Theory Appl. 153, (2012) 769-778.10.1007/s10957-011-9973-5
  12. [12] P.L. Lions, Une méthode itérative de résolution d'une inéquation variationnelle, Israel J. Math. 31, (1978) 204-208.10.1007/BF02760552
  13. [13] P.E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219, (2008) 223-236.10.1016/j.cam.2007.07.021
  14. [14] B. Martinet, Régularisation d'Inéquations Variationnelles par Approximations Successives, Revue Française d'Informatique et de Recherche Opérationnelle 3, (1970) 154-158.10.1051/m2an/197004R301541
  15. [15] G. Morosanu, Nonlinear Evolution Equations and Applications, Editura Academiei Romane (and D. Reidel publishing Company), Bucharest, 1988.
  16. [16] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14, (1976) 877-898.10.1137/0314056
DOI: https://doi.org/10.1515/auom-2015-0031 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 133 - 146
Submitted on: Jan 1, 2014
Accepted on: May 1, 2014
Published on: Apr 22, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hadi Khatibzadeh, Sajad Ranjbar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.